Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pyridoxal-5′-phosphate-dependent alkyl transfer in nucleoside antibiotic biosynthesis

Abstract

Several nucleoside antibiotics are structurally characterized by a 5″-amino-5″-deoxyribose (ADR) appended via a glycosidic bond to a high-carbon sugar nucleoside (5′S,6′S)-5′-C-glycyluridine (GlyU). GlyU is further modified with an N-alkylamine linker, the biosynthetic origin of which has yet to be established. By using a combination of feeding experiments with isotopically labeled precursors and characterization of recombinant proteins from multiple pathways, the biosynthetic mechanism for N-alkylamine installation for ADR–GlyU-containing nucleoside antibiotics has been uncovered. The data reveal S-adenosyl-l-methionine (AdoMet) as the direct precursor of the N-alkylamine, but, unlike conventional AdoMet- or decarboxylated AdoMet-dependent alkyltransferases, the reaction is catalyzed by a pyridoxal-5′-phosphate-dependent aminobutyryltransferase (ABTase) using a stepwise γ-replacement mechanism that couples γ-elimination of AdoMet with aza-γ-addition onto the disaccharide alkyl acceptor. In addition to using a conceptually different strategy for AdoMet-dependent alkylation, the newly discovered ABTases require a phosphorylated disaccharide alkyl acceptor, revealing a cryptic intermediate in the biosynthetic pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of representative TL1 inhibitors that contain an N-alkylated ADR–GlyU disaccharide core.
Fig. 2: Spectroscopic analysis of feeding experiments.
Fig. 3: Functional assignment of Mur24.
Fig. 4: Isotopic incorporation from l-Met.
Fig. 5: Functional assignment of Mur23.
Fig. 6: Putative γ-elimination and γ-addition mechanism for the PLP-dependent AdoMet:9 ABTases.

Similar content being viewed by others

Data availability

All plasmids and raw data are available upon request. Sequences are deposited at National Center for Biotechnology Information under accession nos.: Mur24, ADZ45336; Mur23, ADZ45335; LipJ, BAJ05886; and SphL, BAO20191.

References

  1. Winn, M., Goss, R. J., Kimura, K. & Bugg, T. D. Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure–function studies and nucleoside biosynthesis. Nat. Prod. Rep. 27, 279–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Shiraishi, T. & Kuzuyama, T. Recent advances in the biosynthesis of nucleoside antibiotics. J. Antibiot. 72, 913–923 (2019).

    Article  CAS  Google Scholar 

  3. Hirano, S., Ichikawa, S. & Matsuda, A. Total synthesis of (+)-FR-900493 and establishment of its absolute stereochemistry. Tetrahedron 63, 2798–2804 (2007).

    Article  CAS  Google Scholar 

  4. Igarashi, M. et al. Caprazamycins, novel lipo-nucleoside antibiotics, from Streptomyces sp. II. Structure elucidation of caprazamycins. J. Antibiot. 58, 327–337 (2005).

    Article  CAS  Google Scholar 

  5. Fujita, Y. et al. A-90289 A and B, new inhibitors of bacterial translocase I, produced by Streptomyces sp. SANK 60405. J. Antibiot. 64, 495–501 (2011).

    Article  CAS  Google Scholar 

  6. Funabashi, M. et al. Structure-based gene targeting discovery of sphaerimicin, a bacterial translocase I inhibitor. Angew. Chem. Int. Ed. 52, 11607–11611 (2013).

    Article  CAS  Google Scholar 

  7. McDonald, L. A. et al. Structures of the muraymycins, novel peptidoglycan biosynthesis inhibitors. J. Am. Chem. Soc. 124, 10260–10261 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Z. et al. Characterization of LipL as a non-heme, Fe(II)-dependent α-ketoglutarate:UMP dioxygenase that generates uridine-5′-aldehyde during A-90289 biosynthesis. J. Biol. Chem. 286, 7885–7892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barnard-Britson, S. et al. Amalgation of nucleosides and amino acids in antibiotic biosynthesis: discovery of an l-threonine:uridine-5′-aldehyde transaldolase. J. Am. Chem. Soc. 134, 18514–18517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chi, X., Pahari, P., Nonaka, K. & Van Lanen, S. G. Biosynthetic origin and mechanism of formation of the aminoribosyl moiety of peptidyl nucleoside antibiotics. J. Am. Chem. Soc. 133, 14452–14459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cui, Z. et al. Enzymatic synthesis of the ribosylated glycyl-uridine disaccharide core of peptidyl nucleoside antibiotics. J. Org. Chem. 83, 7239–7249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaysser, L. et al. Identification and manipulation of the caprazamycin gene cluster lead to new simplified liponucleoside antibiotics and give insights into the biosynthetic pathway. J. Biol. Chem. 284, 14987–14996 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michael, A. J. Biosynthesis of polyamines and polyamine-containing molecules. Biochem. J. 473, 2315–2329 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Dreyfus, C., Lemaire, D., Mari, S., Pignol, D. & Arnoux, P. Crystallographic snapshots of iterative substrate translocations during nicotianamine synthesis in archaea. Proc. Natl. Acad. Sci. USA 106, 16180–16184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, J. et al. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholera. J. Biol. Chem. 284, 9899–9907 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cui, Z. et al. Self-resistance during muraymycin biosynthesis: a complementary nucleotidyltransferase and phosphotransferase with identical modification sites and distinct temporal order. Antimicrob. Agents Chemother. 62, e00193-18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng, L. et al. Identification of the gene cluster involved in muraymycin biosynthesis from Streptomyces sp. NRRL 30471. Mol. Biosyst. 7, 920–927 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Ikeguchi, Y., Bewley, M. C. & Pegg, A. E. Aminopropyltransferases: function, structure, and genetics. J. Biochem. 139, 1–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Martin, J. L. & McMillan, F. M. SAM (dependent) I AM: the S-adenosylmethioine-dependent methyltransferase fold. Curr. Opin. Struct. Biol. 12, 783–793 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Reeve, A. M., Breazeale, S. D. & Townsend, C. A. Purification, characterization, and cloning of an S-adenosylmethionine-dependent 3-amino-3-carboxypropyltransferase in nocardicin biosynthesis. J. Biol. Chem. 1998, 30695–30703 (1998).

    Article  Google Scholar 

  21. Ramalingam, K., Lee, K.-M., Woodard, R. W., Bleecker, A. B. & Kende, H. Stereochemical course of the reaction catalyzed by the pyridoxal phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate synthase. Proc. Natl. Acad. Sci. USA 82, 7820–7824 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, Z., Pan, G., Zhou, H. & Shen, B. Discovery and characterization of 1-aminocyclopropane-1-carboxylic acid synthase of bacterial origin. J. Am. Chem. Soc. 149, 16957–16961 (2018).

    Article  CAS  Google Scholar 

  23. Funabashi, M. et al. The biosynthesis of liposidomycin-like A-90289 antibiotics featuring a new type of sulfotransferase. ChemBioChem 11, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Ko, S., Eliot, A. C. & Kirsch, J. F. S-Methylmethionine is both a substrate and an activator of 1-aminocyclopropane-1-carboxylate synthase. Arch. Biochem. Biophys. 42, 85–90 (2004).

    Article  CAS  Google Scholar 

  25. Johnston, M., Marcotte, P., Donovan, J. & Walsh, C. Mechanistic studies with vinylglycine and β-haoloaminobutyrates as substrates for cystathionine γ-synthase from Salmonella typhimurium. Biochemistry 18, 1729–1738 (1979).

    Article  CAS  PubMed  Google Scholar 

  26. Feng, L. & Kirsch, J. F. l-Vinylglycine is an alternative substrate as well as mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate synthase. Biochemistry 39, 2436–2444 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Capitani, G., Tschopp, M., Eliot, A. C., Kirsch, J. F. & Grütter, M. G. Structure of ACC synthase inactivated by the mechanism-based inhibitor l-vinylglycine. FEBS Lett. 579, 2458–2462 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Guggenheim, S. & Flavin, M. Cystathionine γ-synthase from Salmonella. Spectral changes in the presence of substrates. J. Biol. Chem. 246, 3562–3568 (1971).

  29. Chang, M. N. T. & Walsh, C. T. Stereochemical analysis of γ-replacement and γ-elimination processes catalyzed by a pyridoxal phosphate enzyme. J. Am. Chem. Soc. 103, 4921–4927 (1981).

    Article  CAS  Google Scholar 

  30. Guggenheim, S. & Flavin, M. Cystathionine γ-synthase. A pyridoxal enzyme catalyzing rapid exchange of β and α hydrogen atoms in amino acids. J. Biol. Chem. 244, 6217–6227 (1969).

  31. Krog, J. S. et al. 3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine is one of two novel post-transcriptional modifications in tRNALys(UUU) from Trypanosoma brucei. FEBS J. 278, 4782–4796 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Nishimura, S., Taya, Y., Kuchino, Y. & Oashi, Z. Enzymatic synthesis of 3-(3-amino-3-carboxypropyl)uridine in Escherichia coli phenylalanine transfer RNA: transfer of the 3-amino-acid-3-carboxypropyl group from S-adenosylmethionine. Biochem. Biophys. Res. Commun. 57, 702–708 (1974).

    Article  CAS  PubMed  Google Scholar 

  33. Ikegami, F. et al. Biosynthesis in vitro of 2-(3-amino-3-carboxypropyl)-isoxazolin-5-one, the neurotoxic amino acid in Lathyrus odoratus. Biol. Pharm. Bull. 16, 732–734 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Taya, Y., Tanaka, Y. & Nishimura, S. Cell-free biosynthesis of discadenine, a spore germination inhibitor of Dictyostelium discoideum. FEBS Lett. 89, 326–328 (1978).

    Article  CAS  PubMed  Google Scholar 

  35. Schneider, G., Käck, H. & Lindqvist, Y. The manifold of vitamin B6 dependent enzymes. Structure 8, R1–R6 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Brzović, P., Litzenberger Holbrook, E., Greene, R. C. & Dun, M. F. Reaction mechanism of Escherichia coli cystathionine γ-synthase: direct evidence for a pyridoxamine derivative of vinylglyoxylate as a key intermediate in pyridoxal phosphate dependent γ-elimination and γ-replacement reaction. Biochemistry 29, 442–451 (1990).

    Article  PubMed  Google Scholar 

  37. Yamagata, S. Roles of O-acetyl-l-homoserine sulfhydrylases in microorganisms. Biochimie 71, 1125–1143 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Esaki, N., Tanaka, H., Uemuru, S., Suzuki, T. & Soda, K. Catalytic action of l-methionine γ-lyase on selenomethionine and selenols. Biochemistry 18, 407–410 (1979).

    Article  CAS  PubMed  Google Scholar 

  39. Sato, D. & Nozaki, T. Methionine gamma-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life 61, 1019–1028 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Omura, H. et al. Purification, characterization and gene cloning of thermostable O-acetyl-l-homoserine sulfhydrylase forming γ-cyano-α-aminobutyric acid. J. Biosci. Bioeng. 96, 53–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Chiku, T. et al. H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J. Biol. Chem. 284, 11601–11612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Faulkner, J. R. et al. On the sequence of bond formation in loline alkaloid biosynthesis. ChemBioChem 7, 1078–1088 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Enders, D., Wang, C. & Liebich, J. X. Organocatalytic aza-Michael additions. Chem. Eur. J. 15, 11058–11076 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Freedy, A. M. et al. Chemoselective installation of amine bonds on proteins through aza-Michael ligation. J. Am. Chem. Soc. 139, 18365–18375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, F., Wu, Q., Chen, X., Lin, X. & Wu, Q. A single lipase-catalysed one-pot protocol combining aminolysis resolution and aza-Michael addition: an easy and efficient way to synthesise β-amino acid esters. Eur. J. Org. Chem. 2015, 5393–5401 (2015).

    Article  CAS  Google Scholar 

  46. Chisuga, T., Miyanaga, A., Kudo, F. & Eguchi, T. Structural analysis of the dual-function thioesterase SAV606 unravels the mechanism of Michael addition of glycine to an α,β-unsaturated thioester. J. Biol. Chem. 292, 10926–10937 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kobylarz, M. J. et al. Deciphering the substrate specificity of SbnA, the enzyme catalyzing the first step in staphyloferrin B biosynthesis. Biochemistry 55, 927–939 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Brotzel, F. & Mayr, H. Nucleophilicities of amino acids and peptides. Org. Biomol. Chem. 5, 3814–3820 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry, 2nd edn (Oxford University Press, 2012).

  50. Shiraishi, T., Hiro, N., Igarashi, M., Nishiyama, M. & Kuzuyama, T. Biosynthesis of the antituberculosis agent caprazamycin: identification of caprazol-3″-phosphate, an unprecedented caprazamycin-related metabolite. J. Gen. Appl. Microbiol. 62, 164–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Spork, A. P., Koppermann, S., Dittrich, B., Herbst-Irmer, R. & Ducho, C. Efficient synthesis of the core structure of muraymycin and caprazamycin nucleoside antibiotics based on a stereochemically revised sulfur ylide reaction. Tetrahedron Asymmetry 21, 763–766 (2010).

    Article  CAS  Google Scholar 

  52. Hirano, S., Ichikawa, S. & Matsuda, A. Total synthesis of caprazol, a core structure of the caprazamycin antituberculosis antibiotics. Angew. Chem. Int. Ed. 44, 1854–1856 (2005).

    Article  CAS  Google Scholar 

  53. Cohen, S. A. & Michaud, D. P. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal. Biochem. 211, 279–287 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, J. & Klinman, J. P. High-performance liquid chromatography separation of the (S,S)- and (R,S)-forms of S-adenosyl-l-methionine. Anal. Biochem. 476, 81–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tanaka, H., Yamamoto, A., Ishida, T. & Horiike, K. Simultaneous measurement of d-serine dehydratase and d-amino acid oxidase activities by the detection 2-oxo-acid formation with reverse-phase high performance liquid chromatography. Anal. Biochem. 362, 83–88 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health (NIH, grant nos. AI087849 and GM115261), the National Center for Advancing Translational Sciences (grant nos. UL1TR000117 and UL1TR001998), the Deutsche Forschungsgemeinschaft (grant no. DU1095/5-1), the state of Lower Saxony (Lichtenberg doctoral fellowship (CaSuS program) for A.L.), the Konrad-Adenauer-Stiftung (doctoral fellowship for D.W.) and the Fonds der Chemischen Industrie (doctoral fellowship for G.N.). NMR (600 MHz) data were collected at the NMR facility of the Center for Environmental Systems Biochemistry supported in part by the NIH (grant no. DK097215). We thank the Department of Pharmaceutical Sciences and the College of Pharmacy for financial support for MS and NMR instrumentation.

Author information

Authors and Affiliations

Authors

Contributions

Z.C. and J.O. performed and analyzed the data for cloning, heterologous expression, and protein functional assignments and biochemical characterization. Z.C., X.W. and M.B. performed MS and NMR spectroscopy of enzymatic products and analyzed the respective data. X.L, Y.Z., A.L., D.W. and G.N. performed the chemical synthesis and analyzed the respective data. Z.C., J.S.T., C.D. and S.G.v.L. conceived the study, directed and planned the research, analyzed the data and wrote the article.

Corresponding author

Correspondence to Steven G. Van Lanen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–23

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Overbay, J., Wang, X. et al. Pyridoxal-5′-phosphate-dependent alkyl transfer in nucleoside antibiotic biosynthesis. Nat Chem Biol 16, 904–911 (2020). https://doi.org/10.1038/s41589-020-0548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0548-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing