Abstract
Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by ‘hijacking’ an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Gene and protein accession numbers can be found in Supplementary Dataset 3. RNA sequencing data have been deposited into the National Center for Biotechnology Information, NIH, Sequence Read Archive (BioProject, PRJNA609035 and accession numbers, SRR11192643-SRR11192647). Source data for Figs. 2 and 3 are provided with the paper.
Code availability
No custom code or mathematical algorithms were used in this study.
References
Wang, S., Alseekh, S., Fernie, A. R. & Luo, J. The structure and function of major plant metabolite modifications. Mol. Plant 12, 899–919 (2019).
Tiwari, P., Sangwan, R. S. & Sangwan, N. S. Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and scopes. Biotechnol. Adv. 34, 714–739 (2016).
Moses, T., Papadopoulou, K. K. & Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 49, 439–462 (2014).
Augustin, J. M., Kuzina, V., Andersen, S. B. & Bak, S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72, 435–457 (2011).
Marciani, D. J. Is fucose the answer to the immunomodulatory paradox of Quillaja saponins? Int. Immunopharmacol. 29, 908–913 (2015).
Louveau, T. et al. Analysis of two new arabinosyltransferases belonging to the carbohydrate-active enzyme (CAZY) glycosyl transferase family1 provides insights into disease resistance and sugar donor specificity. Plant Cell 30, 3038–3057 (2018).
Sanchez-Dominguez, C. N., Gallardo-Blanco, H. L., Salinas-Santander, M. A. & Ortiz-Lopez, R. Uridine 5’-diphospho-glucronosyltrasferase: its role in pharmacogenomics and human disease (review). Exp. Ther. Med. 16, 3–11 (2018).
Vincken, J. P., Heng, L., de Groot, A. & Gruppen, H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68, 275–297 (2007).
Biazzi, E. et al. CYP72A67 catalyzes a key oxidative step in Medicago truncatula hemolytic saponin biosynthesis. Mol. Plant 8, 1493–1506 (2015).
Richmond, T. Higher plant cellulose synthases. Genome Biol. 1, 1–5 (2000).
Arendt, P. et al. An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metab. Eng. 40, 165–175 (2017).
Oka, T. & Jigami, Y. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. FEBS J 273, 2645–2657 (2006).
Purushotham, P. et al. A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro. Proc. Natl Acad. Sci. USA 113, 11360–11365 (2016).
Henry, M. Saponins and phylogeny: example of the ‘gypsogenin group’ saponins. Phytochem. Rev. 4, 89–94 (2005).
Jarvis, D. E. et al. The genome of Chenopodium quinoa. Nature 542, 307–312 (2017).
Pollier, J., Morreel, K., Geelen, D. & Goossens, A. Metabolite profiling of triterpene saponins in Medicago truncatula hairy roots by liquid chromatography fourier transform ion cyclotron resonance mass spectrometry. J. Nat. Prod. 74, 1462–1476 (2011).
Sayama, T. et al. The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean. Plant Cell 24, 2123–2138 (2012).
Huhman, D. V. & Sumner, L. W. Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59, 347–360 (2002).
Mroczek, A., Kapusta, I., Janda, B. & Janiszowska, W. Triterpene saponin content in the roots of red beet (Beta vulgaris L.) cultivars. J. Agric. Food Chem. 60, 12397–12402 (2012).
Liu, Y. Y., Yang, Y. N., Feng, Z. M., Jiang, J. S. & Zhang, P. C. Eight new triterpenoid saponins with antioxidant activity from the roots of Glycyrrhiza uralensis Fisch. Fitoterapia 133, 186–192 (2019).
Källberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012).
Sethaphong, L. et al. Tertiary model of a plant cellulose synthase. Proc. Natl Acad. Sci. USA 110, 7512–7517 (2013).
Hasemann, C. A., Kurumbail, R. G., Boddupalli, S. S., Peterson, J. A. & Deisenhofer, J. Structure and function of cytochromes P450:a comparative analysis of three crystal structures. Structure 3, 41–62 (1995).
Linscott, K. B., Niehaus, T. D., Zhuang, X., Bell, S. A. & Chappell, J. Mapping a kingdom-specific functional domain of squalene synthase. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1861, 1049–1057 (2016).
Christen, M. et al. Structural insights on cholesterol endosynthesis: binding of squalene and 2,3-oxidosqualene to supernatant protein factor. J. Struct. Biol. 190, 261–270 (2015).
Thoma, R. et al. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Nature 432, 118–122 (2004).
Kurosawa, Y., Takahara, H. & Shiraiwa, M. UDP-glucuronic acid:soyasapogenol glucuronosyltransferase involved in saponin biosynthesis in germinating soybean seeds. Planta 215, 620–629 (2002).
Johnson, S. R. et al. Promiscuous terpene synthases from Prunella vulgaris highlight the importance of substrate and compartment switching in terpene synthase evolution. New Phytol. 223, 323–335 (2019).
Mizutani, K. et al. Sweetness of glycyrrhetic acid 3-O-β-d-monoglucuronide and the related glycosides. Biosci. Biotechnol. Biochem. 58, 554–555 (1994).
Seki, H. et al. Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc. Natl Acad. Sci. USA 105, 14204–14209 (2008).
Seki, H. et al. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell 23, 4112–4123 (2011).
Mortimer, J. C. et al. An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. Plant J. 83, 413–426 (2015).
Nomura, Y. et al. Functional specialization of UDP-glycosyltransferase 73P12 in licorice to produce a sweet triterpenoid saponin, glycyrrhizin. Plant J. 99, 1127–1143 (2019).
Ma, B., Simala-Grant, J. L. & Taylor, D. E. Fucosylation in prokaryotes and eukaryotes. Glycobiology 16, 158–184 (2006).
Fanani, M. Z. et al. Molecular basis of C-30 product regioselectivity of legume oxidases involved in high-value triterpenoid biosynthesis. Front. Plant Sci. 10, 1–16 (2019).
Wang, X. et al. Identification of isoliquiritigenin as an activator that stimulates the enzymatic production of glycyrrhetinic acid monoglucuronide. Sci. Rep. 7, 1–10 (2017).
Itkin, M. et al. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23, 4507–4525 (2011).
Schädel, C., Blöchl, A., Richter, A. & Hoch, G. Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol. Biochem. 48, 1–8 (2010).
Khakimov, B., Tseng, L. H., Godejohann, M., Bak, S. & Engelsen, S. B. Screening for triterpenoid saponins in plants using hyphenated analytical platforms. Molecules 21, 1–19 (2016).
Schröder, H. et al. A triterpene saponin from Herniaria glabra. Phytochemistry 34, 1609–1613 (1993).
Mazzola, E. P. et al. Utility of coupled-HSQC experiments in the intact structural elucidation of three complex saponins from Blighia sapida. Carbohydr. Res. 346, 759–768 (2011).
Zhong, S. et al. High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb. Protoc. 6, 940–949 (2011).
Wingett, S. W. & Andrews, S. Fastq screen: a tool for multi-genome mapping and quality control [version 1; referees: 3 approved, 1 approved with reservations]. F1000 Res. 7, 1–13 (2018).
The Beta vulgaris resource http://bvseq.boku.ac.at/Genome/Download/index.shtml (University of Natural Resources and Life Sciences, 2020).
Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).
Anders, S., Pyl, P. T. & Huber, W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
Tzfadia, O. et al. CoExpNetViz: comparative co-expression networks construction and visualization tool. Front. Plant Sci. 6, 1–7 (2016).
Shannon, P. et al. Cytoscape: a software environment for integrated models. Genome Res. 13, 2498–2504 (2003).
Vazquez-Vilar, M. et al. GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data. Nucleic Acids Res. 45, 2196–2209 (2017).
Senthil-Kumar, M. & Mysore, K. S. Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat. Protoc. 9, 1549–1562 (2014).
Nelson, B. K., Cai, X. & Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).
Hachet-Haas, M. et al. FRET and colocalization analyzer—a method to validate measurements of sensitized emission FRET acquired by confocal microscopy and available as an ImageJ plug-in. Microsc. Res. Tech. 69, 941–956 (2006).
Laursen, T. et al. Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science 354, 890–893 (2016).
Ursache, R., Andersen, T. G., Marhavý, P. & Geldner, N. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J. 93, 399–412 (2018).
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
Boisson-Dernier, A. et al. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol. Plant-Microbe Interact. 14, 695–700 (2001).
Morgan, J. L. W., McNamara, J. T. & Zimmer, J. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat. Struct. Mol. Biol. 21, 489–496 (2014).
Pravda, L. et al. MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res. 46, W368–W373 (2018).
Acknowledgements
A.A. is the incumbent of the Peter J. Cohn Professorial Chair. We thank G. Dvir for seeds of studied plants, M. Schuldiner (Weizmann Institute of Science) for plasmids pESC, A. Goossens for standard of medicagenic acid, D. Nelson for CYP nomenclature and M. Court for UGT nomenclature assignment. A.J. received funding from the Dean of Faculty Fellowship. We thank the Adelis Foundation, Leona M. and Harry B. Helmsley Charitable Trust, Jeanne and Joseph Nissim Foundation for Life Sciences, Tom and Sondra Rykoff Family Foundation Research and the Raymond Burton Plant Genome Research Fund for funding and supporting the A.A. laboratory activity.
Author information
Authors and Affiliations
Contributions
A.J., P.D.S. and A.A. conceived of the project. A.J. and S.P. were responsible for cloning, VIGS and transient expression in N. benthamiana. A.J. and B.A. generated transgenic alfalfa hairy root cultures. E.A.S. provided bioinformatic data analysis. H.M., C.G., K.K.P. and A.J. carried out laser confocal imaging. T.S. acquired and analyzed NMR spectra. A.J. conducted all the remaining experiment and analyzed the data. A.J. and A.A. wrote the paper with the assistance and input of all coauthors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–46 and Note.
Supplementary Dataset 1
MS based identification of triterpenoid saponins in studied plants.
Supplementary Dataset 2
Transcriptomic data (raw and normalized counts) of spinach samples.
Supplementary Dataset 3
List of primers used in the study.
Supplementary Dataset 4
Coexpression analysis of spinach genes with three baits SOAP1, SOAP2 and CYP716A268v2.
Supplementary Dataset 5
Source data for Supplementary Figures.
Source data
Source Data Fig. 2
Source Data Figure 2.
Source Data Fig. 3
Source Data Figure 3.
Rights and permissions
About this article
Cite this article
Jozwiak, A., Sonawane, P.D., Panda, S. et al. Plant terpenoid metabolism co-opts a component of the cell wall biosynthesis machinery. Nat Chem Biol 16, 740–748 (2020). https://doi.org/10.1038/s41589-020-0541-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41589-020-0541-x
This article is cited by
-
Incorporation of nitrogen in antinutritional Solanum alkaloid biosynthesis
Nature Chemical Biology (2024)
-
Unlocking saponin biosynthesis in soapwort
Nature Chemical Biology (2024)
-
Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis
Nature Communications (2023)
-
Deciphering triterpenoid saponin biosynthesis by leveraging transcriptome response to methyl jasmonate elicitation in Saponaria vaccaria
Nature Communications (2023)
-
Characterization and structure-based protein engineering of a regiospecific saponin acetyltransferase from Astragalus membranaceus
Nature Communications (2023)