Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine

Abstract

The inert chemical property of RNA modification N6-methyladenosine (m6A) makes it very challenging to detect. Most m6A sequencing methods rely on m6A-antibody immunoprecipitation and cannot distinguish m6A and N6,2′-O-dimethyladenosine modification at the cap +1 position (cap m6Am). Although the two antibody-free methods (m6A-REF-seq/MAZTER-seq and DART-seq) have been developed recently, they are dependent on m6A sequence or cellular transfection. Here, we present an antibody-free, FTO-assisted chemical labeling method termed m6A-SEAL for specific m6A detection. We applied m6A-SEAL to profile m6A landscapes in humans and plants, which displayed the known m6A distribution features in transcriptome. By doing a comparison with all available m6A sequencing methods and specific m6A sites validation by SELECT, we demonstrated that m6A-SEAL has good sensitivity, specificity and reliability for transcriptome-wide detection of m6A. Given its tagging ability and FTO’s oxidation property, m6A-SEAL enables many applications such as enrichment, imaging and sequencing to drive future functional studies of m6A and other modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FTO-assisted selective chemical labeling of m6A.
Fig. 2: m6A-SEAL on model RNA and human poly(A)+ RNA.
Fig. 3: m6A-SEAL-seq uncovers the transcriptome-wide m6A methylome in HEK293T cells.
Fig. 4: Comparison of m6A methylome in human HEK293T cells and rice detected by m6A-SEAL-seq and all available m6A-seq methods.

Similar content being viewed by others

Data availability

Sequencing data have been deposited in GSE129979.

Code availability

Custom Bash, Perl and R codes used for data analysis are available at https://github.com/WYeast.

References

  1. Yue, Y., Liu, J. & He, C. RNA N 6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29, 1343–1355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jia, G. et al. N 6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N 6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Ping, X.-L. et al. Mammalian WTAP is a regulatory subunit of the RNA N 6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, X. et al. N 6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, X. et al. N 6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, A. et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 27, 444 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Hsu, P. J. et al. Ythdc2 is an N 6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27, 1115–1127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nachtergaele, S. & He, C. Chemical modifications in the life of an mRNA transcript. Annu. Rev. Genet. 52, 349–372 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, Z. et al. FTO plays an oncogenic role in acute myeloid leukemia as a N 6-methyladenosine RNA demethylase. Cancer Cell 31, 127–141 (2017).

    Article  PubMed  CAS  Google Scholar 

  13. Lichinchi, G. et al. Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe. 20, 666–673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, Y. et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 35, 677–691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tirumuru, N. et al. N 6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. eLife 5, e15528 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bastian, L. et al. Single-nucleotide resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  Google Scholar 

  19. Chen, K. et al. High-resolution N 6-methyladenosine m6A map using photo-crosslinking-assisted m6A sequencing. Angew. Chem. Int. Ed. 127, 1607–1610 (2015).

    Article  Google Scholar 

  20. Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29, 2037–2053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Molinie, B. et al. m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nat. Methods 13, 692 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Z. et al. Single-base mapping of m6A by an antibody-independent method. Sci. Adv. 5, eaax0250 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garcia-Campos, M. A. et al. Deciphering the ‘m6A Code’ via antibody-independent quantitative profiling. Cell 178, 731–747.e16 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Meyer, K. D. DART-seq: an antibody-free method for global m6A detection. Nat. Methods 16, 1275–1280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fu, Y. et al. FTO-mediated formation of N 6-hydroxymethyladenosine and N 6-formyladenosine in mammalian RNA. Nat. Commun. 4, 1798 (2013).

    Article  PubMed  CAS  Google Scholar 

  26. Lu, K. et al. Structural characterization of formaldehyde-induced cross-links between amino acids and deoxynucleosides and their oligomers. J. Am. Chem. Soc. 132, 3388–3399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. You, X. J. et al. Determination of RNA hydroxylmethylation in mammals by mass spectrometry analysis. Anal. Chem. 91, 10477–10483 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Huber, S. M. et al. Formation and abundance of 5-hydroxymethylcytosine in RNA. Chem. Bio. Chem. 16, 752–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, N. et al. Probing N 6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, J. et al. N 6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 31, 580–586 (2020).

    Article  CAS  Google Scholar 

  31. Mauer, J. et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541, 371–375 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang, F. et al. The subunit of RNA N 6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice. PLoS Genet. 15, e1008120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, Y. et al. Transcriptome-wide N 6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification. RNA Biol. 11, 1180–1188 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wei, L.-H. et al. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. Plant Cell 30, 968–985 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiao, Y. et al. An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N 6-methyladenosine modification. Angew. Chem. Int. Ed. 57, 15995–16000 (2018).

    Article  CAS  Google Scholar 

  36. Sun, H., Zhang, M., Li, K., Bai, D. & Yi, C. Cap-specific, terminal N 6-methylation by a mammalian m6Am methyltransferase. Cell Res. 29, 80–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Sendinc, E. et al. PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol. Cell 75, 620–630.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boulias, K. et al. Identification of the m6Am methyltransferase PCIF1 reveals the location and functions of m6Am in the transcriptome. Mol. Cell 75, 631–643.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fu, Y. et al. N 6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161, 879–892 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Greer, E. L. et al. DNA methylation on N 6-Adenine in C. elegans. Cell 161, 868–878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, G. Q. et al. N 6-methyladenine DNA modification in Drosophila. Cell 161, 893–906 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Wu, T. P. et al. DNA methylation on N 6-adenine in mammalian embryonic stem cells. Nature 532, 329–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao, C. L. et al. N 6-methyladenine DNA modification in the human genome. Mol. Cell 71, 306–318.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Jia, G. et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 582, 3313–3319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bailey, T. L. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27, 1653–1659 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cui, X. et al. Guitar: an R/bioconductor package for gene annotation guided transcriptomic analysis of RNA-related genomic features. BioMed. Res. Int. 2016, 8367534 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge X. Lei for discussing the thiol-addition reaction mechanism and S. Liu, J. Meng and H. Liu for helping with data analysis. This work was supported by the National Basic Research Program of China (grant nos. 2019YFA0802201 and 2017YFA0505201), the National Natural Science Foundation of China (nos. 21822702, 21820102008 and 21432002) and the State Key Laboratory of Drug Research.

Author information

Authors and Affiliations

Authors

Contributions

G.J. and Y.W. conceived the project and designed the experiments. Y.W. performed the experiments and data analysis with the help of Y.X., S.D. and Q.Y. G.J. and Y.W. wrote the manuscript.

Corresponding author

Correspondence to Guifang Jia.

Ethics declarations

Competing interests

A patent application has been filed by Peking University for the technology disclosed in this publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental Information

Supplementary Table 1–3, Figs. 1–25 and Notes 1–3.

Reporting Summary

Supplementary Dataset 1

Contains two worksheets, followed by explanations for each column.

Supplementary Dataset 2

Contains one worksheet, followed by an explanation for each column.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xiao, Y., Dong, S. et al. Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine. Nat Chem Biol 16, 896–903 (2020). https://doi.org/10.1038/s41589-020-0525-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0525-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing