Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep mutational scanning reveals the structural basis for α-synuclein activity

Abstract

Defining the biologically active structures of proteins in their cellular environments remains challenging for proteins with multiple conformations and functions, where only a minor conformer might be associated with a given function. Here, we use deep mutational scanning to probe the structure and dynamics of α-synuclein, a protein known to adopt disordered, helical and amyloid conformations. We examined the effects of 2,600 single-residue substitutions on the ability of intracellularly expressed α-synuclein to slow the growth of yeast. Computational analysis of the data showed that the conformation responsible for this phenotype is a long, uninterrupted, amphiphilic helix with increasing dynamics toward the C terminus. Deep mutational scanning can therefore determine biologically active conformations in cellular environments, even for a highly dynamic multi-conformational protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conformational landscape of α-synuclein.
Fig. 2: Fitness scores of α-synuclein point mutants.
Fig. 3: Mutational sensitivity varies by depth of membrane burial.
Fig. 4: Mutations that disrupt toxicity perturb formation of the amphiphilic helix.
Fig. 5: Topology of α-synuclein–membrane interactions.

Similar content being viewed by others

Data availability

Raw sequencing data are available at the NCBI Sequence Read Archive (PRJNA564806). Source data for Figs. 24 and Supplementary Fig. 2 are available online. Unprocessed images are available upon request.

Code availability

Programs developed to analyze the data reported are available at github.com/rnewberry17.

References

  1. Socolich, M. et al. Evolutionary information for specifying a protein fold. Nature 437, 512–518 (2005).

    CAS  PubMed  Google Scholar 

  2. Morcos, F. et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl Acad. Sci. USA 108, E1293–E1301 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Marks, D. S. et al. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6, e28766 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Toth-Petroczy, A. et al. Structured states of disordered proteins from genomic sequences. Cell 167, 158–170.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11, 801–807 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bolognesi, B. et al. The mutational landscape of a prion-like domain. Nat. Commun. 10, 4162 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Gray, V. E. et al. Elucidating the molecular determinants of Aβ aggregation with deep mutational scanning. G3 (Bethesda) 9, 3683–3689 (2019).

    Google Scholar 

  8. Schmiedel, J. M. & Lehner, B. Determining protein structures using deep mutagenesis. Nat. Genet. 51, 1177–1186 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rollins, N. J. et al. Inferring protein 3D structure from deep mutation scans. Nat. Genet. 51, 1170–1176 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. & Lansbury, P. T. Jr. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35, 13709–13715 (1996).

    CAS  PubMed  Google Scholar 

  11. Theillet, F.-X. et al. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530, 45–50 (2016).

    CAS  PubMed  Google Scholar 

  12. Conway, K. A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA 97, 571–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bartels, T., Choi, J. G. & Selkoe, D. J. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107–110 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ulmer, T. S., Bax, A., Cole, N. B. & Nussbaum, R. L. Structure and dynamics of micelle-bound human α-synuclein. J. Biol. Chem. 280, 9595–9603 (2005).

    CAS  PubMed  Google Scholar 

  15. Jao, C. C., Hegde, B. G., Chen, J., Haworth, I. S. & Langen, R. Structure of membrane-bound α-synuclein from site-directed spin labeling and computational refinement. Proc. Natl Acad. Sci. USA 105, 19666–19671 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fusco, G. et al. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat. Commun. 5, 3827 (2014).

    CAS  PubMed  Google Scholar 

  17. Tuttle, M. D. et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 23, 409–415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Guerrero-Ferreira, R. et al. Cryo-EM structure of alpha-synuclein fibrils. eLife 7, e36402 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Li, B. et al. Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nat. Commun. 9, 3609 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernandez-Escamilla, A.-M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotech. 22, 1302–1306 (2004).

    CAS  Google Scholar 

  22. Outeiro, T. F. & Lindquist, S. Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Soper, J. H. et al. α-Synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 1093–1103 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shahmoradian, S. H. et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22, 1099–1109 (2019).

    CAS  PubMed  Google Scholar 

  25. Willingham, S., Outeiro, T. F., DeVit, M. J., Lindquist, S. L. & Muchowski, P. J. Yeast genes that enhance the toxicity of a mutant Huntingtin fragment or α-synuclein. Science 302, 1769–1772 (2003).

    CAS  PubMed  Google Scholar 

  26. Cooper, A. A. et al. α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313, 324–328 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gitler, A. D. et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41, 308–315 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Khurana, V. et al. Genome-scale networks link neurodegenerative disease genes to α-synuclein through specific molecular pathways. Cell Syst. 4, 157–170.e114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tardiff, D. F. et al. Yeast reveal a “druggable” Rsp5/Nedd4 network that ameliorates α-synuclein toxicity in neurons. Science 342, 979–983 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fanning, S. et al. Lipidomic analysis of α-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment. Mol. Cell 73, 1–14 (2018).

    Google Scholar 

  31. Chung, C. Y. et al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Volles, M. J. & Lansbury, P. T. Jr. Relationships between the sequence of α-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J. Mol. Biol. 366, 1510–1522 (2007).

    CAS  PubMed  Google Scholar 

  33. Bodner, C. R., Dobson, C. M. & Bax, A. Multiple tight phospholipid-binding modes of α-synuclein revealed by solution NMR spectroscopy. J. Mol. Biol. 390, 775–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fakhree, M. A. A., Engelbertink, S. A. J., van Leijenhorst-Groener, K. A., Blum, C. & Claessens, M. M. A. E. Cooperation of helix insertion and lateral pressure to remodel membranes. Biomacromolecules 20, 1217–1223 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Burré, J., Sharma, M. & Südhof, T. C. Systematic mutagenesis of α-synuclein reveals distinct sequence requirements for physiological and pathological activities. J. Neurosci. 32, 15227–15242 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Bendor, J. T., Logan, T. P. & Edwards, R. H. The function of α-synuclein. Neuron 79, 1044–1066 (2013).

    CAS  PubMed  Google Scholar 

  37. Segrest, J. P. et al. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J. Lipid Res. 33, 141–166 (1992).

    CAS  PubMed  Google Scholar 

  38. Bussell, R. Jr. & Eliezer, D. A structural and functional role for 11-mer repeats in α-synuclein and other exchangeable lipid binding proteins. J. Mol. Biol. 329, 763–778 (2003).

    CAS  PubMed  Google Scholar 

  39. Fusco, G. et al. Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nat. Commun. 7, 12563 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Snead, D. & Eliezer, D. Intrinsically disordered proteins in synaptic vesicle trafficking and release. J. Biol. Chem. 294, 3325–3342 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Galvagnion, C. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11, 229–234 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fusco, G. et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 358, 1440–1443 (2017).

    CAS  PubMed  Google Scholar 

  43. Emberly, E. G., Mukhopadhyay, R., Wingreen, N. S. & Tang, C. Flexibility of α-helices: results of a statistical analysis of database protein structures. J. Mol. Biol. 327, 229–237 (2003).

    CAS  PubMed  Google Scholar 

  44. Braun, A. R. et al. α-Synuclein induces both positive mean curvature and negative Gaussian curvature in membranes. J. Am. Chem. Soc. 134, 2613–2620 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Logan, T., Bendor, J., Toupin, C., Thorn, K. & Edwards, R. H. α-Synuclein promotes dilation of the exocytotic fusion pore. Nat. Neurosci. 20, 681–689 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lautenschläger, J., Kaminski, C. F. & Kaminski Schierle, G. S. α-Synuclein—regulator of exocytosis, endocytosis, or both? Trends Cell Biol. 27, 468–479 (2017).

    PubMed  Google Scholar 

  47. Starita, L. M. et al. Massively parallel functional analysis of BRCA1 RING domain variants. Genetics 200, 413–422 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Matreyek, K. A. et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat. Genet. 50, 874–882 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gietz, R. D. & Schiestl, R. H. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 38–41 (2007).

    CAS  PubMed  Google Scholar 

  50. Fowler, D. M., Stephany, J. J. & Fields, S. Measuring the activity of protein variants on a large scale using deep mutational scanning. Nat. Protoc. 9, 2267–2284 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kloepper, K. D., Woods, W. S., Winter, K. A., George, J. M. & Rienstra, C. M. Preparation of α-synuclein fibrils for solid-state NMR: expression, purification, and incubation of wild-type and mutant forms. Protein Expr. Purif. 48, 112–117 (2006).

    CAS  PubMed  Google Scholar 

  52. Huang, C., Ren, G., Zhou, H. & Wang, C.-C. A new method for purification of recombinant human α-synuclein in Escherichia coli. Protein Expr. Purif. 42, 173–177 (2005).

    CAS  PubMed  Google Scholar 

  53. Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Larsen for technical assistance. We acknowledge students of the Integrated Program in Quantitative Biology at UCSF for contributions to our analytical approach and initial models of toxicity; their findings regarding α-synuclein DMS under different environmental conditions will be described in a manuscript currently in preparation. We thank the laboratory of H. El-Samad (University of California, San Francisco) for yeast strains, the laboratory of V. M.-Y. Lee for plasmids (University of Pennsylvania) and Twist Bioscience for providing the dsDNA variant library in support of our educational efforts. This work was supported by grants from the NIH to M.K. (grant no. DP2 GM119139) and to W.F.D. (grant nos. R35-122603, P01-AG002132, R01-GM117593) and by the UCSF Program in Breakthrough Biomedical Research, which is funded in part by the Sandler Foundation, through grants to M.K. R.W.N. was supported by NIH training grant no. T32-HL007731 and a UCSF Program in Breakthrough Biomedical Research Postdoc Independent Research Grant, which is funded in part by the Sandler Foundation. Flow cytometry was supported by grant no. P30-CA082103 (NIH).

Author information

Authors and Affiliations

Authors

Contributions

R.W.N. and M.K. conceived the project. R.W.N., M.K. and W.F.D. formulated the hypotheses and designed the experiments. R.W.N., E.D.C. and M.K. designed the library and sequencing strategy. R.W.N. constructed and screened the variant library and yeast strains. R.W.N., J.T.L. and M. K. designed the cell sorting strategy. J.T.L. performed flow cytometry. E.D.C. collected next-generation sequencing data. R.W.N. purified proteins and performed circular dichroism spectroscopy and fluorescence microscopy. R.W.N. and W.F.D. developed structural models. R.W.N., M.K. and W.F.D analyzed the data and drafted the manuscript. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Martin Kampmann or William F. DeGrado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data

Source data for Figs. 2, 3a, 4 and Supplementary Fig. 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newberry, R.W., Leong, J.T., Chow, E.D. et al. Deep mutational scanning reveals the structural basis for α-synuclein activity. Nat Chem Biol 16, 653–659 (2020). https://doi.org/10.1038/s41589-020-0480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0480-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing