Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical detection triggers honey bee defense against a destructive parasitic threat

Abstract

Invasive species events related to globalization are increasing, resulting in parasitic outbreaks. Understanding of host defense mechanisms is needed to predict and mitigate against the consequences of parasite invasion. Using the honey bee Apis mellifera and the mite Varroa destructor, as a host–parasite model, we provide a comprehensive study of a mechanism of parasite detection that triggers a behavioral defense associated with social immunity. Six Varroa-parasitization-specific (VPS) compounds are identified that (1) trigger Varroa-sensitive hygiene (VSH, bees’ key defense against Varroa sp.), (2) enable the selective recognition of a parasitized brood and (3) induce responses that mimic intrinsic VSH activity in bee colonies. We also show that individuals engaged in VSH exhibit a unique ability to discriminate VPS compounds from healthy brood signals. These findings enhance our understanding of a critical mechanism of host defense against parasites, and have the potential to apply the integration of pest management in the beekeeping sector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Field bioassay to assess the hygienic behavior of honey bees toward brood cells treated with different Varroa extracts.
Fig. 2: Identification of six cuticular compounds that are specific to the Varroa-parasitized status of brood cells (VPS compounds).
Fig. 3: Quantification of the six VPS compounds in bee pupae and mites.
Fig. 4: Biological activity of VPS compounds in the VSH field bioassay.
Fig. 5: Adult bee perception and integration of the VPS compounds.

Similar content being viewed by others

Data availability

All data generated for the present study are available upon request to the corresponding author.

Code availability

All computer codes generated for the present study are available upon request to the corresponding author.

References

  1. Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ugelvig, L. V. & Cremer, S. Effects of social immunity and unicoloniality on host–parasite interactions in invasive insect societies. Funct. Ecol. 26, 1300–1312 (2012).

    Article  Google Scholar 

  3. Mack, R. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).

    Article  Google Scholar 

  4. Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Boomsma, J. J., Schmid-Hempel, P. & Hughes, W. O. H. in Insect Evolutionary Ecology (eds Fellowes, M. et al.) 139–175 (CABI, 2005).

  6. Cremer, S., Armitage, S. A. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, 693–702 (2007).

    Article  Google Scholar 

  7. Parker, B. J., Barribeau, S. M., Laughton, A. M., de Roode, J. C. & Gerardo, N. M. Non-immunological defense in an evolutionary framework. Trends Ecol. Evol. 26, 242–248 (2011).

    Article  PubMed  Google Scholar 

  8. De Roode, J. C. & Lefèvre, T. Behavioral immunity in insects. Insects 3, 789–820 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wyatt, T. D. Pheromones and Animal Behaviour: Communication by Smell and Taste (Cambridge Univ. Press, 2003).

  10. Penn, D. & Potts, W. K. Chemical signals and parasite-mediated sexual selection. Trends Ecol. Evol. 13, 391–396 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Bagnères, A. G. & Lorenzi, M. C. in Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (eds Blomquist G. J. & Bagnères A. G.) 282–324 (Cambridge Univ. Press, 2010).

  12. Baracchi, D., Fadda, A. & Turillazzi, S. Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. J. Insect Physiol. 58, 1589–1596 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Schöning, C. et al. Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera. J. Exp. Biol. 215, 264–271 (2012).

    Article  PubMed  Google Scholar 

  14. Csata, E. et al. Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci. Rep. 7, 46323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pull, C. D., Metzler, S., Naderlinger, E. & Cremer, S. Protection against the lethal side effects of social immunity in ants. Curr. Biol. 28, 1139–1140 (2018).

    Article  Google Scholar 

  16. Nazzi, F., Della Vedova, G. & d’Agaro, M. A semiochemical from brood cells infested by Varroa destructor triggers hygienic behaviour in Apis mellifera. Apidologie 35, 65–70 (2004).

    Article  CAS  Google Scholar 

  17. Swanson, J. A. et al. Odorants that induce hygienic behavior in honeybees: identification of volatile compounds in chalkbrood-infected honeybee larvae. J. Chem. Ecol. 35, 1108–1116 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Wagoner, K., Spivak, M., Hefetz, A., Reams, T. & Rueppell, O. Stock-specific chemical brood signals are induced by Varroa and deformed wing virus, and elicit hygienic response in the honey bee. Sci. Rep. 9, 8753 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, Q., Haynes, K. F. & Zhou, X. Dynamic changes in death cues modulate risks and rewards of corpse management in a social insect. Funct. Ecol. 31, 697–706 (2017).

    Article  Google Scholar 

  20. Qiu, H. L. et al. Differential necrophoric behaviour of the ant Solenopsis invicta towards fungal-infected corpses of workers and pupae. Bull. Entomol. Res. 105, 607–614 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Wagoner, K. M., Millar, J. G., Schal, C. & Rueppell, O. Cuticular pheromones stimulate hygienic behavior in the honey bee (Apis mellifera). Sci. Rep. 10, 7132(2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Traynor, K. et al. Varroa destructor: a complex parasite, crippling honeybees worldwide. Trends Parasitol. 36, 592–606 (2020).

    Article  CAS  Google Scholar 

  23. Mondet, F. et al. Honey bee survival mechanisms against the parasite Varroa destructor: a systematic review of phenotypic and genomic research efforts. Int. J. Parasitol. 50, 433–447 (2020).

    Article  PubMed  Google Scholar 

  24. Harbo, J. R. & Harris, J. W. Suppressed mite reproduction explained by the behaviour of adult bees. J. Apic. Res. 44, 21–23 (2005).

    Article  Google Scholar 

  25. Nazzi, F. & Le Conte, Y. Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Annu. Rev. Entomol. 61, 417–432 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Rosenkranz, P., Tewarson, N., Singh, A. & Engels, W. Differential hygienic behaviour towards Varroa jacobsoni in capped worker brood of Apis cerana depends on alien scent adhering to the mites. J. Apic. Res. 32, 89–93 (1993).

    Article  Google Scholar 

  27. Mondet, F. et al. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees. Sci. Rep. 5, 10454 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Martin, C. et al. Variations in chemical mimicry by the ectoparasitic mite Varroa jacobsoni according to the developmental stage of the host honey-bee Apis mellifera. Insect Biochem. Mol. Biol. 31, 365–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Martin, C. et al. Potential mechanism for detection by Apis mellifera of the parasitic mite Varroa destructor inside sealed brood cells. Physiol. Entomol. 27, 175–188 (2002).

    Article  CAS  Google Scholar 

  30. Ziegelmann, B. & Rosenkranz, P. Mating disruption of the honeybee mite Varroa destructor under laboratory and field conditions. Chemoecology 24, 137–144 (2014).

    Article  Google Scholar 

  31. Le Conte, Y., Arnold, G., Trouiller, J., Masson, C. & Chappe, B. Identification of a brood pheromone in honeybees. Naturwissenschaften 77, 334–336 (1990).

    Article  Google Scholar 

  32. Mondet, F. et al. Specific cues associated with honey bee social defence against Varroa destructor infested brood. Sci. Rep. 6, 25444 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harris, J. W. Bees with varroa sensitive hygiene preferentially remove mite infested pupae aged ≤five days post capping. J. Apic. Res. 46, 134–139 (2007).

    Article  Google Scholar 

  34. Harbo, J. R. & Harris, J. W. Responses to Varroa by honey bees with different levels of varroa sensitive hygiene. J. Apic. Res. 48, 156–161 (2009).

    Article  Google Scholar 

  35. Infantidis, M. D. Ontogenesis of the mite Varroa jacobsoni in worker and done honeybee brood cells. J. Agric. Res. 22, 200–206 (1983).

    Google Scholar 

  36. Blomquist, G. J., A. J. Chu, A. J. & Remaley, S. Biosynthesis of wax in the honeybee, Apis mellifera L. Insect Biochem. 10, 313–321 (1980).

    Article  CAS  Google Scholar 

  37. Donzé, G. et al. Aliphatic alcohols and aldehydes of the honey bee cocoon induce arrestment behavior in Varroa jacobsoni (Acari: Mesostigmata), an ectoparasite of Apis mellifera. Arch. Insect Biochem. Physiol. 37, 129–145 (1998).

    Article  Google Scholar 

  38. Shearer, D. A. & Boch, R. 2-Heptanone in the mandibular gland secretion of the honey-bee. Nature 206, 530–530 (1965).

    Article  CAS  Google Scholar 

  39. Salvy, M. et al. Modifications of the cuticular hydrocarbon profile of Apis mellifera worker bees in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells. Parasitology 122, 145–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Harris, J. W., Danka, R. G. & Villa, J. D. Honey bees (Hymenoptera: Apidae) with the trait of Varroa sensitive hygiene remove brood with all reproductive stages of Varroa mites (Mesostigmata: Varroidae). Ann. Entomol. Soc. Am. 103, 146–152 (2010).

    Article  Google Scholar 

  41. McAfee, A. et al. A death pheromone, oleic acid, triggers hygienic behavior in honey bees (Apis mellifera L.). Sci. Rep. 8, 5719 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Slessor, K. N., Winston, M. L. & Le Conte, Y. Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol. 31, 2731–2745 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, S. H., Mondet, F., Hervé, M. & Mercer, A. Honey bees performing varroa sensitive hygiene remove the most mite-compromised bees from highly infested patches of brood. Apidologie 49, 335–345 (2018).

    Article  CAS  Google Scholar 

  44. Galizia, C. G. & Sachse, S. Odor coding in insects. in The Neurobiology of Olfaction (ed. Menini, A.) 35–70 (CRC Press/Taylor & Francis, 2010).

  45. McAfee, A., Collins, T. F., Madilao, L. L. & Foster, L. J. Odorant cues linked to social immunity induce lateralized antenna stimulation in honey bees (Apis mellifera L.). Sci. Rep. 7, 46171 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Villa, J. D., Danka, R. G. & Harris, J. W. Simplified methods of evaluating colonies for levels of varroa sensitive hygiene (VSH). J. Apic. Res. 48, 162–167 (2009).

    Article  Google Scholar 

  47. Grob, R. L., Kaiser, M. A., Grob, R. L. & Barry, E. F. in Modern Practice of Gas Chromatography, 4th edn (ed. Grob, R. L.) 403–460 (Wiley, 2004).

  48. Sparkman, O. D., Penton, Z. & Kitson, F. G. Gas Chromatography and Mass Spectrometry: A Practical Guide (Academic Press, 2011).

  49. Arathi, H. S., Burns, I. & Spivak, M. Ethology of hygienic behaviour in the honey bee Apis mellifera L. (Hymenoptera: Apidae): behavioural repertoire of hygienic bees. Ethology 106, 365–379 (2000).

    Article  Google Scholar 

  50. Dietemann, V. et al. Standard methods for varroa research. J. Apic. Res. 52, 1–54 (2013).

    Google Scholar 

  51. Matsumoto, Y., Menzel, R., Sandoz, J. C. & Giurfa, M. Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. J. Neurosci. Methods 211, 159–167 (2012).

    Article  PubMed  Google Scholar 

  52. Scheiner, R., Page, R. E. Jr. & Erber, J. Responsiveness to sucrose affects tactile and olfactory learning in pre-foraging honey bees of two genetic strains. Behav. Brain Res. 120, 67–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank Y. Poquet for help in the collection of VSH bees and mites, F. Laas for providing mite-infested colonies, D. Crauser and J. Senechal for giving access to honey bee colonies, and GDR Mediatec for fruitful scientific discussions. This project was funded by grants provided by INRAE (SPE Department), the University of Otago and a Casdar fund from the French Ministry of Agriculture (Mosar). F.M. was supported by grants from the France–New Zealand Friendship Fund, by the French Ministry of Agriculture and a New Zealand international doctoral research scholarship. MS analyses were in part performed at the Plateforme d’Analyses Chimiques en Ecologie, technical facilities of the CeMEB.

Author information

Authors and Affiliations

Authors

Contributions

F.M., A.R.M. and Y.L.C. designed the project. F.M., S.B., D.B., N.B., B.L., C.B., S.H.K., B.B. and G.C. performed the experiments with contributions as follows. F.M., S.B., C.B., B.B. did the field assays. F.M., S.B. and D.B. did the GC analyses. F.M., N.B. and G.C. did the MS analyses. F.M. and S.H.K. performed the sucrose responsiveness assay. F.M. performed the learning assay. F.M., C.B. and B.L. did the EAGs. F.M. and M.H. analyzed the data. F.M., A.R.M. and Y.L.C. wrote the manuscript.

Corresponding author

Correspondence to Fanny Mondet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 One-hour memory recall in VSH bees and NVS bees.

Percentages of VSH bees and NVS bees displaying conditioned proboscis extension responses (PER) 1 hour after the final (6th) conditioning trial. All bees were trained to discriminate between an odorant paired with a sugar reward (CS+, healthy brood extract + VPS compounds) and a non-reinforced odorant (CS-, healthy brood extract). The figure shows the percentages of bees responding to the CS+, the CS- and to a novel odour not presented during the learning phase (Diff, Nonanol), (GLMM, nVSH = 32, nNVS = 28). Different letters indicate significant results in the analyses.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondet, F., Blanchard, S., Barthes, N. et al. Chemical detection triggers honey bee defense against a destructive parasitic threat. Nat Chem Biol 17, 524–530 (2021). https://doi.org/10.1038/s41589-020-00720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-00720-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing