Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The case of the missing allosteric ribozymes

Subjects

Abstract

The RNA World theory encompasses the hypothesis that sophisticated ribozymes and riboswitches were the primary drivers of metabolic processes in ancient organisms. Several types of catalytic RNAs and many classes of ligand-sensing RNA switches still exist in modern cells. Curiously, allosteric ribozymes formed by the merger of RNA enzyme and RNA switch components are largely absent in today’s biological systems. This is true despite the striking abundances of various classes of both self-cleaving ribozymes and riboswitch aptamers. Here we present the known types of ligand-controlled ribozymes and riboswitches and discuss the possible reasons why fused ribozyme–aptamer constructs have been disfavored through evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The known classes of natural ribozymes and riboswitches.
Fig. 2: General architectures of engineered and natural ligand-controlled ribozymes.
Fig. 3: Two predominant expression platform mechanisms for riboswitches.
Fig. 4: Types of ribozyme naturally regulated by the binding of small molecules.
Fig. 5: A true allosteric ribozyme formed by a single RNA transcript.

References

  1. 1.

    Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Liu, J. & Nussinov, R. Allostery: an overview of its history, concepts, methods and applications. PLoS Comput. Biol. 12, e1004966 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Dokholyan, N. V. Controlling allosteric networks in proteins. Chem. Rev. 116, 6463–6487 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Tang, J. & Breaker, R. R. Rational design of allosteric ribozymes. Chem. Biol. 4, 453–459 (1997).

    CAS  PubMed  Google Scholar 

  5. 5.

    Araki, M., Okuno, Y., Hara, Y. & Sugiura, Y. Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res. 26, 3379–3384 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Soukup, G. A. & Breaker, R. R. Engineering precision RNA molecular switches. Proc. Natl Acad. Sci. USA 96, 3584–3589 (1999).

    CAS  PubMed  Google Scholar 

  7. 7.

    Jose, A. M., Soukup, G. A. & Breaker, R. R. Cooperative binding of effectors by an allosteric ribozyme. Nucleic Acids Res. 29, 1631–1637 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Thompson, K. M., Syrett, H. A., Knudsen, S. M. & Ellington, A. D. Group I aptazymes as genetic regulatory switches. BMC Biotechnol. 2, 21 (2002).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Felletti, M. & Hartig, J. S. Ligand-dependent ribozymes. Wiley Interdiscip. Rev. RNA 8, e1395 (2017).

    Google Scholar 

  10. 10.

    Walter, J. G. & Stahl, F. in Catalytically Active Nucleic Acids. Advances in Biochemical Engineering/Biotechnology Vol. 170 (eds Seitz, H. et al.) (Springer, 2019).

  11. 11.

    Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).

    Google Scholar 

  12. 12.

    Robertson, M. P. & Joyce, G. F. The origins of the RNA World. Cold Spring Harb. Perspect. Biol. 4, a003608 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Benner, S. A., Ellington, A. D. & Tauer, A. Modern metabolism as a palimpsest of the RNA world. Proc. Natl Acad. Sci. USA 86, 7054–7058 (1989). The arguments presented in this Perspective provide strong support for the hypothesis that RNA World organisms ran a complex metabolic state by using enzymes made of RNA.

    CAS  PubMed  Google Scholar 

  14. 14.

    Chen, X., Li, N. & Ellington, A. D. Ribozyme catalysis of metabolism in the RNA World. Chem. Biodivers. 4, 633–655 (2007).

    CAS  PubMed  Google Scholar 

  15. 15.

    White, H. B. III Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7, 101–104 (1976).

    CAS  PubMed  Google Scholar 

  16. 16.

    Breaker, R. R. Prospects for riboswitch discovery and analysis. Mol. Cell 43, 867–879 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    McCown, P. J., Corbino, K. A., Stav, S., Sherlock, M. E. & Breaker, R. R. Riboswitch diversity and distribution. RNA 23, 995–1011 (2017). This Review presents most of the riboswitches classes that have been discovered to date, along with a proposal that thousands more riboswitch classes remain hidden among bacterial genomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Vitreschak, A. G., Rodionov, D. A., Mironov, A. A. & Gelfand, M. S. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet. 20, 44–50 (2004).

    CAS  PubMed  Google Scholar 

  19. 19.

    Breaker, R. R. Riboswitches and the RNA World. Cold Spring Harb. Perspect. Biol. 4, a003566 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Breaker, R. R. Imaginary ribozymes. ACS Chem. Biol. 15, 2020–2030 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Nelson, J. W. & Breaker, R. R. The lost language of the RNA World. Sci. Signal. 10, eaam8812 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Jimenez, R. M., Polanco, J. A. & Lupták, A. Chemistry and biology of self-cleaving ribozymes. Trends Biochem. Sci. 40, 648–661 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Perreault, J. et al. Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput. Biol. 7, e1002031 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hammann, C., Lupták, A., Perreault, J. & de la Peña, M. The ubiquitous hammerhead ribozyme. RNA 18, 871–885 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Webb, C. H., Riccitelli, N. J., Ruminski, D. J. & Lupták, A. Widespread occurrence of self-cleaving ribozymes. Science 326, 953 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Roth, A. et al. A widespread self-cleaving ribozyme is revealed by bioinformatics. Nat. Chem. Biol. 10, 56–60 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Lee, E. R., Baker, J. L., Weinberg, Z., Sudarsan, N. & Breaker, R. R. An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329, 845–848 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Schmidt, C. M. & Smolke, C. D. RNA switches for synthetic biology. Cold Spring Harb. Perspect. Biol. 11, a032532 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Yokobayashi, Y. Aptamer-based and aptazyme-based riboswitches in mammalian cells. Curr. Opin. Chem. Biol. 52, 72–78 (2019). Refs. 28 and 29 provide overviews of the various practical applications of engineered RNA switches, including allosteric ribozymes.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Barrick, J. E. & Breaker, R. R. The distributions, mechanisms and structures of metabolite-binding riboswitches. Genome Biol. 8, R239 (2007).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Yarnell, W. S. & Roberts, J. W. Mechanism of intrinsic transcription termination and antitermination. Science 284, 611–615 (1999).

    CAS  PubMed  Google Scholar 

  32. 32.

    Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999).

    CAS  PubMed  Google Scholar 

  33. 33.

    Omotajo, D., Tate, T., Cho, H. & Choudhary, M. Distribution and diversity of ribosome binding sites in prokaryotic genomes. BMC Genomics 16, 604 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Schneider, T. D., Stormo, G. D., Gold, L. & Ehrenfeucht, A. Information content of binding sites on nucleotide sequences. J. Mol. Biol. 188, 415–431 (1986).

    CAS  PubMed  Google Scholar 

  35. 35.

    Nissen, J., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    CAS  PubMed  Google Scholar 

  36. 36.

    Cech, T. R. The ribosome is a ribozyme. Science 289, 878–879 (2000).

    CAS  PubMed  Google Scholar 

  37. 37.

    Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    CAS  PubMed  Google Scholar 

  38. 38.

    McCown, P. J., Roth, A. & Breaker, R. R. An expanded collection and refined consensus model of glmS ribozymes. RNA 17, 728–736 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Collins, J. A., Irnov, I., Baker, S. & Winkler, W. C. Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev. 21, 3356–3368 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    McCarthy, T. J. et al. Ligand requirements for glmS ribozyme self-cleavage. Chem. Biol. 12, 1221–1226 (2005).

    CAS  PubMed  Google Scholar 

  41. 41.

    Viladoms, J. & Fedor, M. J. The glmS ribozyme cofactor is a general acid-base catalyst. J. Am. Chem. Soc. 134, 19043–19049 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    McCown, P. J., Winkler, W. C. & Breaker, R. R. Mechanism and distribution of glmS ribozymes. Methods Mol. Biol. 848, 113–129 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Cochrane, J. C., Lipchock, S. V., Smith, K. D. & Strobel, S. A. Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme. Biochemistry 48, 3239–3246 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Klein, D. J. & Ferré-D’Amaré, A. R. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate activation. Science 313, 1752–1756 (2006). The modified sugar glucosamine-6-phosphate activates ribozyme self-cleavage by serving as a cofactor and not by functioning as an allosteric effector.

    CAS  PubMed  Google Scholar 

  45. 45.

    Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Watson, P. Y. & Fedor, M. J. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. Nat. Struct. Mol. Biol. 18, 359–363 (2011). The findings described in this report reveal that glucose affects glmS ribozyme function by competitive inhibition, but not by an allosteric mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Cech, T. R. Self-splicing of group I introns. Annu. Rev. Biochem. 59, 543–568 (1990).

    CAS  PubMed  Google Scholar 

  48. 48.

    Hernández-Morales, R., Becerra, A. & Lazcano, A. Alarmones as vestiges of a bygone RNA World. J. Mol. Evol. 87, 37–51 (2019).

    PubMed  Google Scholar 

  49. 49.

    Sudarsan, N. et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411–413 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Lee, E. R., Baker, J. L., Weinberg, Z., Sudarsan, N. & Breaker, R. R. Anallosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329, 845–848 (2010). The only known allosteric ribozyme found in modern cells senses the signaling molecule c-di-GMP to regulate splicing by a group I ribozyme.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Sherlock, M. E., Sudarsan, N. & Breaker, R. R. Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems. Proc. Natl Acad. Sci. USA 115, 6052–6057 (2018).

    CAS  PubMed  Google Scholar 

  52. 52.

    Yarus, M. A specific amino acid binding site composed of RNA. Science 240, 1751–1758 (1988).

    CAS  PubMed  Google Scholar 

  53. 53.

    Sudarsan, N., Barrick, J. E. & Breaker, R. R. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9, 644–647 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kubodera, T. et al. Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett. 555, 516–520 (2003).

    CAS  PubMed  Google Scholar 

  55. 55.

    Cheah, M. T., Wachter, A., Sudarsan, N. & Breaker, R. R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 497–500 (2007). Riboswitches can control alternative splicing by regulating eukaryotic spliceosome access to pre-mRNA substrates, which could be considered an allosteric ribosome control in trans.

    CAS  PubMed  Google Scholar 

  56. 56.

    Wachter, A. et al. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 19, 3437–3450 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Bocobza, S. et al. Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev. 21, 2874–2879 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Croft, M. T., Moulin, M., Webb, M. E. & Smith, A. G. Thiamine biosynthesis in algae is regulated by riboswitches. Proc. Natl Acad. Sci. USA 104, 20770–20775 (2007).

    CAS  PubMed  Google Scholar 

  59. 59.

    Li, S. & Breaker, R. R. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing. Nucleic Acids Res. 41, 3022–3031 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Fica, S. M. et al. RNA catalyzes nuclear pre-mRNA splicing. Nature 503, 229–234 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Chen, A. G. Y., Sudarsan, N. & Breaker, R. R. Mechanism for gene control by a natural allosteric group I ribozyme. RNA 17, 1967–1972 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Sudarsan, N. et al. Tandem riboswitch architectures exhibit complex gene control functions. Science 314, 300–304 (2006).

    CAS  PubMed  Google Scholar 

  63. 63.

    Stoddard, C. D. & Batey, R. T. Mix-and-match riboswitches. ACS Chem. Biol. 1, 751–754 (2006).

    CAS  PubMed  Google Scholar 

  64. 64.

    Breaker, R. R. Complex riboswitches. Science 319, 1795–1797 (2008).

    CAS  PubMed  Google Scholar 

  65. 65.

    Sherlock, M. E., Sudarsan, N., Stav, S. & Breaker, R. R. Tandem riboswitches form a natural Boolean logic gate to control purine metabolism in bacteria. eLife 7, e33908 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Hausner, G., Hafez, M. & Edgell, D. R. Bacterial group I introns: mobile RNA catalysts. Mob. DNA 5, 8 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Lambowitz, A. M. & Zimmerly, S. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb. Perspect. Biol. 3, a003616 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Wang, L. et al. Allosteric control of the ribosome by small-molecule antibiotics. Nat. Struct. Mol. Biol. 19, 957–963 (2010).

    Google Scholar 

  69. 69.

    Fagan, C. E. et al. Reorganization of an intersubunit bridge induced by disparate 16S ribosomal ambiguity mutations mimics an EF-Tu-bound state. Proc. Natl Acad. Sci. USA 110, 9716–9721 (2013).

    CAS  PubMed  Google Scholar 

  70. 70.

    Moore, P. B. Ribosomal ambiguity made less ambiguous. Proc. Natl Acad. Sci. USA 110, 9627–9628 (2013).

    CAS  PubMed  Google Scholar 

  71. 71.

    Passalacqua, L. F. M., Jimenez, R. M., Fong, J. Y. & Lupták, A. Allosteric modulation of the Faecalibacterium prausnitzii hepatitis delta virus-like ribozyme by glucosamine 6-phosphate: the substrate of the adjacent gene. Biochemistry 56, 6006–6014 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Tang, J. & Breaker, R. R. Structural diversity of self-cleaving ribozymes. Proc. Natl Acad. Sci. USA 97, 5784–5789 (2000).

    CAS  PubMed  Google Scholar 

  73. 73.

    Link, K. H. & Breaker, R. R. Engineering ligand-responsive gene control elements: lessons learned from natural riboswitches. Gene Ther. 16, 1189–1201 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Harris, A. Roth, N. Sudarsan and Y. Yang for critically reading the manuscript. This work was supported by NIH grants (GM022778 and AI136794) as well as funds from Howard Hughes Medical Institute.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Breaker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panchapakesan, S.S.S., Breaker, R.R. The case of the missing allosteric ribozymes. Nat Chem Biol 17, 375–382 (2021). https://doi.org/10.1038/s41589-020-00713-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing