Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease

Abstract

Amyloid aggregation, which disrupts protein homeostasis, is a common pathological event occurring in human neurodegenerative diseases (NDs). Numerous evidences have shown that the structural diversity, so-called polymorphism, is decisive to the amyloid pathology and is closely associated with the onset, progression, and phenotype of ND. But how could one protein form so many stable structures? Recently, atomic structural evidence has been rapidly mounting to depict the involvement of chemical modifications in the amyloid fibril formation. In this Perspective, we aim to present a hierarchical regulation of chemical modifications including covalent post-translational modifications (PTMs) and noncovalent cofactor binding in governing the polymorphic amyloid formation, based mainly on the latest α-synuclein and Tau fibril structures. We hope to emphasize the determinant role of chemical modifications in amyloid assembly and pathology and to evoke chemical biological approaches to lead the fundamental and therapeutic research on protein amyloid state and the associated NDs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Environment-sensitive amyloid fibril formation of Tau and α-syn proteins.
Fig. 2: Schematic of the hierarchical regulation of chemical modifications to amyloid fibril assembly.
Fig. 3: Chemical modifications in the regulation of α-syn fibril conformations.
Fig. 4: Chemical modifications in regulation of brain-extracted Tau fibril conformations.

References

  1. 1.

    Lee, V. M., Goedert, M. & Trojanowski, J. Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001).

    CAS  PubMed  Google Scholar 

  2. 2.

    Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 49–60 (2003).

    CAS  PubMed  Google Scholar 

  3. 3.

    Lin, M. T. & Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006).

    CAS  PubMed  Google Scholar 

  4. 4.

    Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  PubMed  Google Scholar 

  5. 5.

    Irwin, D. J., Lee, V. M. & Trojanowski, J. Q. Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat. Rev. Neurosci. 14, 626–636 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Nussbaum, R. L. & Ellis, C. E. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med. 348, 1356–1364 (2003).

    CAS  PubMed  Google Scholar 

  7. 7.

    Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).

    CAS  Google Scholar 

  8. 8.

    Mayeux, R. et al. Synergistic effects of traumatic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer’s disease. Neurology 45, 555–557 (1995).

    CAS  PubMed  Google Scholar 

  9. 9.

    Eimer, W. A. et al. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 100, 1527–1532 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Zhang, W. et al. Novel tau filament fold in corticobasal degeneration. Nature 580, 283–287 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Schweighauser, M. et al. Structures of α-synuclein filaments from multiple system atrophy. Nature 585, 464–469 (2020). This study reports the pathological fibril structure of α-synuclein derived from patients of multiple system atrophy.

    CAS  PubMed  Google Scholar 

  13. 13.

    Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kam, T. I. et al. Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science 362, eaat8407 (2018). This article demonstrates the important role of poly(ADP-ribose) as an endogenous cofactor of α-synuclein to regulate its aggregation and pathology in cells.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Gambetti, P. et al. Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta Neuropathol. 121, 79–90 (2011).

    CAS  PubMed  Google Scholar 

  17. 17.

    Meda, L. et al. Activation of microglial cells by β-amyloid protein and interferon-gamma. Nature 374, 647–650 (1995).

    CAS  PubMed  Google Scholar 

  18. 18.

    Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78 (2011).

    CAS  PubMed  Google Scholar 

  19. 19.

    Ruan, L. et al. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543, 443–446 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Falcon, B. et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568, 420–423 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Peng, C. et al. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 557, 558–563 (2018). This article highlights that different cellular environments may lead to the formation of α-synuclein fibrils with distinct structures and neuropathologies.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Falcon, B. et al. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561, 137–140 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Qiang, W., Yau, W. M., Lu, J. X., Collinge, J. & Tycko, R. Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes. Nature 541, 217–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease.Nature 547, 185–190 (2017). This paper reports the atomic structure of pathological fibrils directly extracted from the brain of a patient with AD.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Peelaerts, W. et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344 (2015). This study highlights the diverse structures and pathologies of different strains of α-synuclein fibrils.

    CAS  PubMed  Google Scholar 

  26. 26.

    Dobson, C. M., Knowles, T. P. J. & Vendruscolo, M. The Amyloid phenomenon and its significance in biology and medicine. Cold Spring Harb. Perspect. Biol. 12, a033878 (2020).

    CAS  PubMed  Google Scholar 

  27. 27.

    Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    CAS  PubMed  Google Scholar 

  29. 29.

    Zhang, W. et al. Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. eLife 8, e43584 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Arakhamia, T. et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180, 633–644.e12 (2020). This article highlights the important role of post-translational modifications in determining the structures of Tau fibrils in different types of tauopathies.

    CAS  Google Scholar 

  31. 31.

    Zhao, K. et al. Parkinson’s disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure. Nat. Commun. 11, 2643 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ni, X., McGlinchey, R. P., Jiang, J. & Lee, J. C. Structural Insights into α-synuclein fibril polymorphism: effects of Parkinson’s disease-related C-terminal truncations. J. Mol. Biol. 431, 3913–3919 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Li, Y. et al. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res. 28, 897–903 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Li, B. et al. Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nat. Commun. 9, 3609 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Guerrero-Ferreira, R. et al. Cryo-EM structure of α-synuclein fibrils. eLife 7, e36402 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kollmer, M. et al. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat. Commun. 10, 4760 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Gremer, L. et al. Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science 358, 116–119 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wang, L. Q. et al. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nat. Struct. Mol. Biol. 27, 598–602 (2020). This study shows non-proteinaceous molecules that mediate the formation of fibrils of full-length human prions.

    PubMed  Google Scholar 

  39. 39.

    Glynn, C. et al. Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat. Struct. Mol. Biol. 27, 417–423 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Zhao, K. et al. Parkinson’s disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proc. Natl. Acad. Sci. USA 117, 20305–20315 (2020). This study reveals the structural basis of how a disease-associated phosphorylation induces the formation of a new fibril structure of α-synuclein with enhanced stability and neurotoxicity.

    CAS  PubMed  Google Scholar 

  41. 41.

    Friedrich, N. & Kekule, A. Zur amyloidfrage. Virchows Arch. Pathol. Anat. Physiol. 16, 50–65 (1859).

    Google Scholar 

  42. 42.

    Li, D. & Liu, C. Structural diversity of amyloid fibrils and advances in their structure determination. Biochemistry 59, 639–646 (2020).

    CAS  PubMed  Google Scholar 

  43. 43.

    Fitzpatrick, A. W. & Saibil, H. R. Cryo-EM of amyloid fibrils and cellular aggregates. Curr. Opin. Struct. Biol. 58, 34–42 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).

    CAS  PubMed  Google Scholar 

  45. 45.

    Guerrero-Ferreira, R., Kovacik, L., Ni, D. & Stahlberg, H. New insights on the structure of α-synuclein fibrils using cryo-electron microscopy. Curr. Opin. Neurobiol. 61, 89–95 (2020).

    CAS  PubMed  Google Scholar 

  46. 46.

    Goedert, M., Falcon, B., Zhang, W., Ghetti, B. & Scheres, S. H. W. Distinct conformers of assembled tau in Alzheimer’s and Pick’s diseases. Cold Spring Harb. Symp. Quant. Biol. 83, 163–171 (2018).

    PubMed  Google Scholar 

  47. 47.

    Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    CAS  PubMed  Google Scholar 

  48. 48.

    Walker, L. C. Proteopathic strains and the heterogeneity of neurodegenerative diseases. Annu. Rev. Genet. 50, 329–346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Sanders, D. W., Kaufman, S. K., Holmes, B. B. & Diamond, M. I. Prions and protein assemblies that convey biological information in health and disease. Neuron 89, 433–448 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Safar, J. et al. Eight prion strains have PrP(Sc) molecules with different conformations. Nat. Med. 4, 1157–1165 (1998).

    CAS  PubMed  Google Scholar 

  51. 51.

    Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007).

    CAS  PubMed  Google Scholar 

  52. 52.

    Prusiner, S. B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 47, 601–623 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Walker, L. C. & Jucker, M. Neurodegenerative diseases: expanding the prion concept. Annu. Rev. Neurosci. 38, 87–103 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Taniguchi-Watanabe, S. et al. Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol. 131, 267–280 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Boluda, S. et al. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains. Acta Neuropathol. 129, 221–237 (2015).

    CAS  PubMed  Google Scholar 

  57. 57.

    Nekooki-Machida, Y. et al. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc. Natl. Acad. Sci. USA 106, 9679–9684 (2009).

    CAS  PubMed  Google Scholar 

  58. 58.

    Arnold, S. E. et al. Comparative survey of the topographical distribution of signature molecular lesions in major neurodegenerative diseases. J. Comp. Neurol. 521, 4339–4355 (2013).

    PubMed  Google Scholar 

  59. 59.

    Brettschneider, J. et al. Converging patterns of α-synuclein pathology in multiple system atrophy. J. Neuropathol. Exp. Neurol. 77, 1005–1016 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Trojanowski, J. Q., Revesz, T. & Neuropathology Working Group on MSA. Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol. Appl. Neurobiol. 33, 615–620 (2007).

  61. 61.

    Spillantini, M. G. et al. α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  PubMed  Google Scholar 

  62. 62.

    He, Z. et al. Transmission of tauopathy strains is independent of their isoform composition. Nat. Commun. 11, 7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Guerrero-Ferreira, R. et al. Two new polymorphic structures of human full-length α-synuclein fibrils solved by cryo-electron microscopy. eLife 8, e48907 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Tuttle, M. D. et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 23, 409–415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Paravastu, A. K., Leapman, R. D., Yau, W. M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc. Natl. Acad. Sci. USA 105, 18349–18354 (2008).

    CAS  PubMed  Google Scholar 

  66. 66.

    De Franceschi, G. et al. Structural and morphological characterization of aggregated species of α-synuclein induced by docosahexaenoic acid. J. Biol. Chem. 286, 22262–22274 (2011).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Miura, T., Suzuki, K., Kohata, N. & Takeuchi, H. Metal binding modes of Alzheimer’s amyloid β-peptide in insoluble aggregates and soluble complexes. Biochemistry 39, 7024–7031 (2000).

    CAS  PubMed  Google Scholar 

  68. 68.

    Porta, S. et al. Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat. Commun. 9, 4220 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Peng, C., Trojanowski, J. Q. & Lee, V. M. Protein transmission in neurodegenerative disease. Nat. Rev. Neurol. 16, 199–212 (2020).

    CAS  PubMed  Google Scholar 

  70. 70.

    Pedersen, J. S. & Otzen, D. E. Amyloid-a state in many guises: survival of the fittest fibril fold. Protein Sci. 17, 2–10 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Levine, P. M. et al. α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 116, 1511–1519 (2019). This study highlights that GlcNAcylation at different sites of α-synuclein exhibits distinctive effects on α-synuclein aggregation and toxicity.

    CAS  PubMed  Google Scholar 

  72. 72.

    Brahmachari, S. et al. Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration. J. Clin. Invest. 126, 2970–2988 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Morris, M. et al. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat. Neurosci. 18, 1183–1189 (2015).

    CAS  PubMed  Google Scholar 

  74. 74.

    Mahul-Mellier, A. L. et al. c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson’s disease. Hum. Mol. Genet. 23, 2858–2879 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Tenreiro, S., Eckermann, K. & Outeiro, T. F. Protein phosphorylation in neurodegeneration: friend or foe? Front. Mol. Neurosci. 7, 42 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Hu, Z. W. et al. Molecular structure of an N-terminal phosphorylated β-amyloid fibril. Proc. Natl. Acad. Sci. USA 116, 11253–11258 (2019).

    CAS  PubMed  Google Scholar 

  77. 77.

    Cohlberg, J. A., Li, J., Uversky, V. N. & Fink, A. L. Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from α-synuclein in vitro. Biochemistry 41, 1502–1511 (2002).

    CAS  PubMed  Google Scholar 

  78. 78.

    Galvagnion, C. et al. Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein. Proc. Natl. Acad. Sci. USA 113, 7065–7070 (2016).

    CAS  PubMed  Google Scholar 

  79. 79.

    Wilson, D. M. & Binder, L. I. Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease. Am. J. Pathol. 150, 2181–2195 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Kampers, T., Friedhoff, P., Biernat, J., Mandelkow, E. M. & Mandelkow, E. RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett. 399, 344–349 (1996).

    CAS  PubMed  Google Scholar 

  81. 81.

    Dikiy, I. et al. Semisynthetic and in vitro phosphorylation of alpha-synuclein at Y39 promotes functional partly helical membrane-bound states resembling those induced by PD mutations. ACS Chem. Biol. 11, 2428–2437 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Nussbaum, J. M. et al. Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature 485, 651–655 (2012). This study reports that pyroglutamylation of amyloid-β plays an important role in mediating its Tau-dependent pathology.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Kummer, M. P. et al. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 71, 833–844 (2011).

    CAS  PubMed  Google Scholar 

  84. 84.

    Goedert, M. et al. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383, 550–553 (1996).

    CAS  PubMed  Google Scholar 

  85. 85.

    Suzuki, K. et al. Neurofibrillary tangles in Niemann-Pick disease type C. Acta Neuropathol. 89, 227–238 (1995).

    CAS  PubMed  Google Scholar 

  86. 86.

    Mandelkow, E. M. & Mandelkow, E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med. 2, a006247 (2012).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Carlomagno, Y. et al. An acetylation-phosphorylation switch that regulates tau aggregation propensity and function. J. Biol. Chem. 292, 15277–15286 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Seidler, P. et al. CryoEM reveals how the small molecule EGCG binds to Alzheimer’s brain-derived tau fibrils and initiates fibril disaggregation. Preprint at bioRxiv https://doi.org/10.1101/2020.05.29.124537 (2020).

  89. 89.

    Hartrampf, N. et al. Synthesis of proteins by automated flow chemistry. Science 368, 980–987 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major State Basic Research Development Program (2016YFA0501902 to C.L.), the National Natural Science Foundation (NSF) of China (91853113 and 31872716 to C.L. and D.L.), the Science and Technology Commission of Shanghai Municipality (18JC1420500 to C.L.), “Eastern Scholar” project supported by Shanghai Municipal Education Commission (D.L.), and the Shanghai Municipal Science and Technology Major Project (2019SHZDZX02 to C.L.).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dan Li or Cong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, D., Liu, C. Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease. Nat Chem Biol 17, 237–245 (2021). https://doi.org/10.1038/s41589-020-00708-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing