Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Harnessing nanotechnology to expand the toolbox of chemical biology

Abstract

Although nanotechnology often addresses biomedical needs, nanoscale tools can also facilitate broad biological discovery. Nanoscale delivery, imaging, biosensing, and bioreactor technologies may address unmet questions at the interface between chemistry and biology. Currently, many chemical biologists do not include nanomaterials in their toolbox, and few investigators develop nanomaterials in the context of chemical tools to answer biological questions. We reason that the two fields are ripe with opportunity for greater synergy. Nanotechnologies can expand the utility of chemical tools in the hands of chemical biologists, for example, through controlled delivery of reactive and/or toxic compounds or signal-binding events of small molecules in living systems. Conversely, chemical biologists can work with nanotechnologists to address challenging biological questions that are inaccessible to both communities. This Perspective aims to introduce the chemical biology community to nanotechnologies that may expand their methodologies while inspiring nanotechnologists to address questions relevant to chemical biology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Major classes of potential contributions of nanotechnology to chemical biology.
Fig. 2: Nanoparticle-based delivery of transition-metal catalysts for intracellular chemical reactions.
Fig. 3: Representative examples of enzymatic nanoreactors.
Fig. 4: Nanotechnologies for imaging applications.
Fig. 5: Examples of optical properties unique to certain nanomaterial imaging agents.
Fig. 6: Examples of nanoscale sensor strategies.

References

  1. 1.

    Kreyling, W. G., Semmler-Behnke, M. & Chaudhry, Q. A complementary definition of nanomaterial. Nano Today 5, 165–168 (2010).

    Google Scholar 

  2. 2.

    Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Deu, E., Verdoes, M. & Bogyo, M. New approaches for dissecting protease functions to improve probe development and drug discovery. Nat. Struct. Mol. Biol. 19, 9–16 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Shamay, Y. et al. Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 17, 361–368 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Wang, A. Z., Langer, R. & Farokhzad, O. C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63, 185–198 (2012).

    CAS  PubMed  Google Scholar 

  6. 6.

    Alidori, S. et al. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci. Transl. Med. 8, 331ra339 (2016).

    Google Scholar 

  7. 7.

    Bianco, A., Kostarelos, K. & Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005).

    CAS  PubMed  Google Scholar 

  8. 8.

    Alexis, F., Pridgen, E. M., Langer, R. & Farokhzad, O. C. in Drug Delivery Handbook of Experimental Pharmacology vol. 197 (ed Schäfer-Korting, M.) 55–86 (Springer, Berlin, Heidelberg, 2010); https://doi.org/10.1007/978-3-642-00477-3_2

  9. 9.

    Wei, X. et al. Cardinal role of intraliposome doxorubicin-sulfate nanorod crystal in doxil properties and performance. ACS Omega 3, 2508–2517 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Govender, T., Stolnik, S., Garnett, M. C., Illum, L. & Davis, S. S. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release 57, 171–185 (1999).

    CAS  PubMed  Google Scholar 

  11. 11.

    Yoo, H. S., Oh, J. E., Lee, K. H. & Park, T. G. Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharm. Res. 16, 1114–1118 (1999).

    CAS  PubMed  Google Scholar 

  12. 12.

    Badeau, B. A., Comerford, M. P., Arakawa, C. K., Shadish, J. A. & DeForest, C. A. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. 10, 251–258 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ramasamy, T. et al. Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater. 10, 5116–5127 (2014).

    CAS  PubMed  Google Scholar 

  14. 14.

    Horcajada, P. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010).

    CAS  PubMed  Google Scholar 

  15. 15.

    El-Sayed, A., Khalil, I. A., Kogure, K., Futaki, S. & Harashima, H. Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape. J. Biol. Chem. 283, 23450–23461 (2008).

    CAS  PubMed  Google Scholar 

  16. 16.

    Budhathoki-Uprety, J., Langenbacher, R. E., Jena, P. V., Roxbury, D. & Heller, D. A. A carbon nanotube optical sensor reports nuclear entry via a noncanonical pathway. ACS Nano 11, 3875–3882 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Yameen, B. et al. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 190, 485–499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Paulo, C. S., Pires das Neves, R. & Ferreira, L. S. Nanoparticles for intracellular-targeted drug delivery. Nanotechnology 22, 494002 (2011).

    PubMed  Google Scholar 

  19. 19.

    Lee, J. et al. Nonendocytic delivery of functional engineered nanoparticles into the cytoplasm of live cells using a novel, high-throughput microfluidic device. Nano Lett. 12, 6322–6327 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gradishar, W. J. et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23, 7794–7803 (2005).

    CAS  PubMed  Google Scholar 

  21. 21.

    Shamay, Y. et al. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Sci. Transl. Med. 8, 345ra387 (2016).

    Google Scholar 

  22. 22.

    Almeida, J. P. M., Chen, A. L., Foster, A. & Drezek, R. In vivo biodistribution of nanoparticles. Nanomedicine (Lond.) 6, 815–835 (2011).

    CAS  Google Scholar 

  23. 23.

    Jokerst, J. V., Lobovkina, T., Zare, R. N. & Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond.) 6, 715–728 (2011).

    CAS  Google Scholar 

  24. 24.

    Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  25. 25.

    Wang, J. et al. The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors. Biomaterials 35, 866–878 (2014).

    CAS  PubMed  Google Scholar 

  26. 26.

    Prabhakar, U. et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412–2417 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Schroeder, A. et al. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 12, 39–50 (2011).

    PubMed  Google Scholar 

  28. 28.

    Burns, A. A. et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 9, 442–448 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Williams, R. M. et al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett. 15, 2358–2364 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Williams, R. M. et al. Selective nanoparticle targeting of the renal tubules. Hypertension 71, 87–94 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Choi, C. H. J., Zuckerman, J. E., Webster, P. & Davis, M. E. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl. Acad. Sci. USA 108, 6656–6661 (2011).

    CAS  PubMed  Google Scholar 

  32. 32.

    Deshmukh, M. et al. Biodistribution and renal clearance of biocompatible lung targeted poly(ethylene glycol) (PEG) nanogel aggregates. J. Control. Release 164, 65–73 (2012).

    CAS  PubMed  Google Scholar 

  33. 33.

    Sharma, R., Saxena, D., Dwivedi, A. K. & Misra, A. Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm. Res. 18, 1405–1410 (2001).

    CAS  PubMed  Google Scholar 

  34. 34.

    Mistry, A., Stolnik, S. & Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm. 379, 146–157 (2009).

    CAS  PubMed  Google Scholar 

  35. 35.

    D’Addio, S. M. & Prud’homme, R. K. Controlling drug nanoparticle formation by rapid precipitation. Adv. Drug Deliv. Rev. 63, 417–426 (2011).

    PubMed  Google Scholar 

  36. 36.

    Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Gratton, S. E. et al. Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT nanoparticles. J. Control. Release 121, 10–18 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wang, A. Z. et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin. Biol. Ther. 8, 1063–1070 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Silpe, J. E. et al. Avidity modulation of folate-targeted multivalent dendrimers for evaluating biophysical models of cancer targeting nanoparticles. ACS Chem. Biol. 8, 2063–2071 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Schmid, D. et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Comm. 8, 1747 (2017).

    Google Scholar 

  41. 41.

    Panyam, J. & Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329–347 (2003).

    CAS  PubMed  Google Scholar 

  42. 42.

    Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    CAS  PubMed  Google Scholar 

  44. 44.

    Yusop, R. M., Unciti-Broceta, A., Johansson, E. M., Sánchez-Martín, R. M. & Bradley, M. Palladium-mediated intracellular chemistry. Nat. Chem. 3, 239–243 (2011).

    CAS  PubMed  Google Scholar 

  45. 45.

    Tonga, G. Y. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 7, 597–603 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Islam, M. A. et al. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nat. Biomed. Eng. 2, 850–864 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Xie, R., Hong, S., Feng, L., Rong, J. & Chen, X. Cell-selective metabolic glycan labeling based on ligand-targeted liposomes. J. Am. Chem. Soc. 134, 9914–9917 (2012).

    CAS  PubMed  Google Scholar 

  48. 48.

    Sun, Y. et al. Mechanistic investigation and multiplexing of liposome-assisted metabolic glycan labeling. J. Am. Chem. Soc. 140, 3592–3602 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Crespilho, F. N., Iost, R. M., Travain, S. A., Oliveira, O. N. Jr. & Zucolotto, V. Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosens. Bioelectron. 24, 3073–3077 (2009).

    CAS  PubMed  Google Scholar 

  50. 50.

    Choi, H.-J. & Montemagno, C. D. Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett. 5, 2538–2542 (2005).

    CAS  PubMed  Google Scholar 

  51. 51.

    Kudina, O. et al. Highly efficient phase boundary biocatalysis with enzymogel nanoparticles. Angew. Chem. Int. Edn Engl. 53, 483–487 (2014).

    CAS  Google Scholar 

  52. 52.

    Lian, X., Erazo-Oliveras, A., Pellois, J. P. & Zhou, H. C. High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Nat. Commun. 8, 2075 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Jordan, P. C. et al. Self-assembling biomolecular catalysts for hydrogen production. Nat. Chem. 8, 179–185 (2016).

    CAS  PubMed  Google Scholar 

  54. 54.

    Wijnands, S. P. W., Engelen, W., Lafleur, R. P. M., Meijer, E. W. & Merkx, M. Controlling protein activity by dynamic recruitment on a supramolecular polymer platform. Nat. Commun. 9, 65 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Ke, G. et al. Directional regulation of enzyme pathways through the control of substrate channeling on a DNA origami scaffold. Angew. Chem. Int. Edn Engl. 55, 7483–7486 (2016).

    CAS  Google Scholar 

  56. 56.

    Jiang, D. et al. Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 48, 3683–3704 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Dong, H., Fan, Y., Zhang, W., Gu, N. & Zhang, Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem. 30, 1273–1296 (2019).

    CAS  PubMed  Google Scholar 

  58. 58.

    Park, S. M., Aalipour, A., Vermesh, O., Yu, J. H. & Gambhir, S. S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2, 17014 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Benezra, M. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 121, 2768–2780 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Chen, M. J. & Yin, M. Z. Design and development of fluorescent nanostructures for bioimaging. Prog. Polym. Sci. 39, 365–395 (2014).

    CAS  Google Scholar 

  61. 61.

    Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    CAS  PubMed  Google Scholar 

  62. 62.

    Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Heller, D. A., Baik, S., Eurell, T. E. & Strano, M. S. Single‐walled carbon nanotube spectroscopy in live cells: towards long‐term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005).

    CAS  Google Scholar 

  64. 64.

    O’Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    PubMed  Google Scholar 

  65. 65.

    Wen, J., Xu, Y., Li, H., Lu, A. & Sun, S. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem. Commun. (Camb.) 51, 11346–11358 (2015).

    CAS  Google Scholar 

  66. 66.

    Ghosh, D. et al. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 111, 13948–13953 (2014).

    CAS  PubMed  Google Scholar 

  67. 67.

    Godin, A. G. et al. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nat. Nanotechnol. 12, 238–243 (2017).

    CAS  PubMed  Google Scholar 

  68. 68.

    Lim, S. Y., Shen, W. & Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015).

    CAS  PubMed  Google Scholar 

  69. 69.

    Hemelaar, S. R. et al. Nanodiamonds as multi-purpose labels for microscopy. Sci. Rep. 7, 720 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Estelrich, J., Sánchez-Martín, M. J. & Busquets, M. A. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int. J. Nanomedicine 10, 1727–1741 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Thakor, A. S. et al. Clinically approved nanoparticle imaging agents. J. Nucl. Med. 57, 1833–1837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Popovtzer, R. et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 8, 4593–4596 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Pérez-Medina, C. et al. A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting. J. Nucl. Med. 55, 1706–1711 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Xie, J. et al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31, 3016–3022 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Lei, J. & Ju, H. Signal amplification using functional nanomaterials for biosensing. Chem. Soc. Rev. 41, 2122–2134 (2012).

    CAS  PubMed  Google Scholar 

  77. 77.

    Liu, Z. et al. Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube raman tags in the near-infrared. Nano Res. 3, 222–233 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Li, Y., Wang, Z., Mu, X., Ma, A. & Guo, S. Raman tags: novel optical probes for intracellular sensing and imaging. Biotechnol. Adv. 35, 168–177 (2017).

    CAS  PubMed  Google Scholar 

  79. 79.

    Li, S. et al. Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles. J. Am. Chem. Soc. 138, 306–312 (2016).

    CAS  PubMed  Google Scholar 

  80. 80.

    Maxwell, D. J., Taylor, J. R. & Nie, S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 124, 9606–9612 (2002).

    CAS  PubMed  Google Scholar 

  81. 81.

    Gao, Y., Shi, J., Yuan, D. & Xu, B. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat. Commun. 3, 1033 (2012).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Mu, C. J., Lavan, D. A., Langer, R. S. & Zetter, B. R. Self-assembled gold nanoparticle molecular probes for detecting proteolytic activity in vivo. ACS Nano 4, 1511–1520 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Ling, D. et al. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc. 136, 5647–5655 (2014).

    CAS  PubMed  Google Scholar 

  84. 84.

    Kruss, S. et al. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proc. Natl. Acad. Sci. USA 114, 1789–1794 (2017).

    CAS  PubMed  Google Scholar 

  85. 85.

    Beyene, A. G. et al. Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor. Sci. Adv. 5, eaaw3108 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Williams, R. M., Lee, C. & Heller, D. A. A fluorescent carbon nanotube sensor detects the metastatic prostate cancer biomarker uPA. ACS Sens. 3, 1838–1845 (2018).

    CAS  PubMed  Google Scholar 

  87. 87.

    Chang, H., Tang, L., Wang, Y., Jiang, J. & Li, J. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 82, 2341–2346 (2010).

    CAS  PubMed  Google Scholar 

  88. 88.

    Rasheed, P. A. & Sandhyarani, N. Carbon nanostructures as immobilization platform for DNA: a review on current progress in electrochemical DNA sensors. Biosens. Bioelectron. 97, 226–237 (2017).

    PubMed  Google Scholar 

  89. 89.

    Hahm, J.-i & Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4, 51–54 (2004).

    CAS  Google Scholar 

  90. 90.

    Feng, L., Chen, Y., Ren, J. & Qu, X. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32, 2930–2937 (2011).

    CAS  PubMed  Google Scholar 

  91. 91.

    Jena, P. V. et al. A carbon nanotube optical reporter maps endolysosomal lipid flux. ACS Nano 11, 10689–10703 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Galassi, T. V. et al. An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo. Sci. Transl. Med. 10, eaar2680 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Harvey, J. D. et al. A carbon nanotube reporter of microRNA hybridization events in vivo. Nat. Biomed. Eng. 1, 0041 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Iverson, N. M. et al. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8, 873–880 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Williams, R. M. et al. Noninvasive ovarian cancer biomarker detection via an optical nanosensor implant. Sci. Adv. 4, eaaq1090 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Chang, P. V. et al. Copper-free click chemistry in living animals. Proc. Natl. Acad. Sci. USA 107, 1821–1826 (2010).

    CAS  PubMed  Google Scholar 

  97. 97.

    Li, J., Jia, S. & Chen, P. R. Diels-Alder reaction-triggered bioorthogonal protein decaging in living cells. Nat. Chem. Biol. 10, 1003–1005 (2014).

    CAS  PubMed  Google Scholar 

  98. 98.

    Roxbury, D. et al. Hyperspectral microscopy of near-infrared fluorescence enables 17-chirality carbon nanotube imaging. Sci. Rep. 5, 14167 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Cancer Center Support Grant (D.A.H., M.L.: P30-CA008748), the NIH New Innovator Award (D.A.H.: DP2-HD075698), National Institute of Diabetes and Digestive and Kidney Diseases (D.A.H.: R01-DK114321), National Cancer Institute (D.A.H.: R01-CA215719), National Institute of Neurological Disorders and Stroke (D.A.H.: R01-NS116353), Clinical and Translational Science Center Grant (D.A.H.: UL1-TR002384), National Institute of General Medical Sciences (M.L.: R01GM096056, R01GM120570, R35GM134878), the National Science Foundation CAREER Award (D.A.H: 1752506), the American Cancer Society Research Scholar Grant (D.A.H.: GC230452), Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, the Experimental Therapeutics Center (D.A.H., M.L.), the Pershing Square Sohn Cancer Research Alliance (D.A.H.), the Honorable Tina Brozman Foundation for Ovarian Cancer Research (D.A.H.), the Expect Miracles Foundation – Financial Services Against Cancer (D.A.H.), the Anna Fuller Fund (D.A.H.), the Louis V. Gerstner Jr. Young Investigator’s Fund (D.A.H.), the Frank A. Howard Scholars Program (D.A.H.), Cycle for Survival (D.A.H.), the Alan and Sandra Gerry Metastasis Research Initiative (D.A.H.), the Imaging & Radiation Sciences Program (D.A.H.), and the Center for Molecular Imaging and Nanotechnology of Memorial Sloan Kettering Cancer (D.A.H.), Starr Cancer Consortium (M.L.), Functional Genomic Initiative (M.L.), the Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center (M.L.), Tri-institute Program of Chemical Biology (S.C.). R.M.W. was supported by the City College of New York Grove School of Engineering, the Ovarian Cancer Research Fund (Ann Schreiber Mentored Investigator Award 370463), and the American Heart Association Postdoctoral Fellowship (17POST33650043).

Author information

Affiliations

Authors

Contributions

R.M.W., S.C., J.B.U., M.L., and D.A.H. conceived of the manuscript; all authors reviewed the literature and drafted the manuscript.

Corresponding authors

Correspondence to Januka Budhathoki-Uprety or Minkui Luo or Daniel A. Heller.

Ethics declarations

Competing interests

D.A.H. is a cofounder and officer with equity interest in Goldilocks Therapeutics, Inc., LipidSense, Inc., and Nirova BioSense, Inc. D.A.H. is a member of the scientific advisory boards of Concarlo Holdings, LLC and Nanorobotics, Inc. R.M.W. is a scientific advisor with equity interest in Goldilocks Therapeutics, Inc. M.L. is a member of the scientific advisory board of Epi One, Inc. P.V.J. is a cofounder and officer with equity interest in LipidSense, Inc. and an officer of Nirova BioSense, Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williams, R.M., Chen, S., Langenbacher, R.E. et al. Harnessing nanotechnology to expand the toolbox of chemical biology. Nat Chem Biol 17, 129–137 (2021). https://doi.org/10.1038/s41589-020-00690-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing