Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structural basis of cycloaddition in biosynthesis of iboga and aspidosperma alkaloids

Abstract

Cycloaddition reactions generate chemical complexity in a single step. Here we report the crystal structures of three homologous plant-derived cyclases involved in the biosynthesis of iboga and aspidosperma alkaloids. These enzymes act on the same substrate, named angryline, to generate three distinct scaffolds. Mutational analysis reveals how these highly similar enzymes control regio- and stereo-selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biosynthesis of aspidosperma and iboga alkaloids.
Fig. 2: Crystal structures of CS, TS and CorS.

Similar content being viewed by others

Data availability

Structures have been deposited at the Protein Data Bank under the accession codes 6RJ8 (coronaridine synthase), 6RS4 (tabersonine synthase) and 6RT8 (catharanthine synthase).

References

  1. O’Connor, S. E. & Maresh, J. J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep. 23, 532–472 (2006).

    Article  Google Scholar 

  2. Caputi, L. et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 60, 1235–1239 (2018).

    Article  Google Scholar 

  3. Wenkert, E. Biosynthesis of indole alkaloids. The aspidosperma and iboga bases. J. Am. Chem. Soc. 84, 98–102 (1962).

    Article  CAS  Google Scholar 

  4. Scott, A. I., Cherry, P. C. & Qureshi, A. A. Mechanisms of indole alkaloid biosynthesis. The Corynanthe-Strychnos relationship. J. Am. Chem. Soc. 91, 4932–4936 (1969).

    Article  CAS  Google Scholar 

  5. Kutney, J. P., Ehret, C., Nelson, V. R. & Wigfield, D. C. Studies on indole alkaloid biosynthesis. II. J. Am. Chem. Soc. 90, 5929–5930 (1968).

    Article  CAS  Google Scholar 

  6. Farrow, S. C. et al. Biosynthesis of an anti-addiction agent from the iboga plant. JACS 141, 12979–12983 (2019).

    Article  CAS  Google Scholar 

  7. Scott, A. I. et al. Biosynthesis of the indole alkaloids. Acc. Chem. Res. 3, 151–157 (1970).

    Article  CAS  Google Scholar 

  8. Qureshi, A. A. & Scott, A. I. Biogenetic-type synthesis of Iboga alkaloids: (±)-catharanthine. J. Chem. Soc. Chem. Commun. 16, 947–948 (1968).

    Google Scholar 

  9. Kuehne, M. E., Roland, D. M. & Haften, R. J. Studies in biomimetic alkaloid syntheses. 2. Synthesis of vincadifformine from tetrahydro-beta-carboline through a secodine intermediate. Org. Chem. 43, 3705–3710 (1978).

    Article  CAS  Google Scholar 

  10. Marshall, S. D., Putterill, J. J., Plummer, K. M. & Newcomb, R. D. The carboxylesterase gene family from Arabidopsis thaliana. J. Mol. Evol. 57, 487–500 (2003).

    Article  CAS  Google Scholar 

  11. Ileperuma, N. R. et al. High-resolution crystal structure of plant carboxylesterase AeCXE1, from Actinidia eriantha, and its complex with a high-affinity inhibitor paraoxon. Biochemistry 46, 1851–1859 (2007).

    Article  CAS  Google Scholar 

  12. Andriamialisoa, R. Z., Langlois, N. & Langlois, Y. Preparation of 15-oxo-16-methoxycarbonyl-15, 20-dihydrocleavamine and coupling reaction with vindoline. Heterocycles 15, 245–250 (1981).

    Article  CAS  Google Scholar 

  13. Langlois, N., Guéritte, F., Langlois, Y. & Potier, P. Application of a modification of the Polonovski reaction to the synthesis of vinblastine-type alkaloids. J. Am. Chem. Soc. 98, 7017–7024 (1976).

    Article  CAS  Google Scholar 

  14. Buonora, P., Olsen, J.-C. & Oh, T. Recent developments in imino Diels–Alder reactions. Tetrahedron 57, 6099–6138 (2001).

    Article  CAS  Google Scholar 

  15. Lichman, B. R., O’Connor, S. E. & Kries, H. Biocatalytic strategies towards [4+2] cycloadditions. Eur. J. Chem. 25, 6864–6877 (2019).

    Article  CAS  Google Scholar 

  16. Tan, D. et al. Genome-mined diels–alderase catalyzes formation of the cis-octahydrodecalins of varicidin A and B. J. Am. Chem. Soc. 141, 769–773 (2019).

    Article  CAS  Google Scholar 

  17. Jeon, B. S. et al. Investigation of the mechanism of the SpnF-catalyzed [4+2]-cycloaddition reaction in the biosynthesis of spinosyn A. Proc. Natl Acad. Sci. 114, 10408–10413 (2017).

    Article  CAS  Google Scholar 

  18. Zhang, B. et al. Enzyme-catalysed [6+4] cycloadditions in the biosynthesis of natural products. Nature 568, 122–126 (2019).

    Article  CAS  Google Scholar 

  19. Berrow, N. S. et al. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 35, e45 (2007).

    Article  Google Scholar 

  20. Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D. Biol. Crystallogr. 74, 85–97 (2018).

    Article  CAS  Google Scholar 

  21. Kabsch, W. XDS. Acta Crystallogr. D. Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  22. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  23. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D. Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  Google Scholar 

  24. Potterton, L. et al. CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallogr. D. Biol. 74, 68–84 (2018).

    Article  CAS  Google Scholar 

  25. Bunkoczi, G. & Read, R. J. Improvement of molecular-replacement models with Sculptor. Acta Crystallogr. D. Biol. Crystallogr. 67, 303–312 (2011).

    Article  CAS  Google Scholar 

  26. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  27. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  28. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  29. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D. Biol. Crystallogr. 62, 1002–1011 (2006).

    Article  Google Scholar 

  30. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nuc. Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  31. McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. D. Biol. Crystallogr. 67, 386–394 (2011).

    Article  CAS  Google Scholar 

  32. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.E.O. acknowledges ERC (788301). J.F. acknowledges financial support by the SMART BIOTECS alliance between the Technische Universität Braunschweig and the Leibniz Universität Hannover, supported by the Ministry for Science and Culture (MWK) of Lower Saxony, Germany. We acknowledge Diamond Light Source for access to beamline I03 under proposal MX13467 with support from the European Community’s Seventh Framework Program (No. FP7/2007–2013) under Grant Agreement No. 283570 (BioStruct-X).

Author information

Authors and Affiliations

Authors

Contributions

L.C. and S.E.O. conceived the project. D.M.L. managed all crystallography experiments. D.M.L., L.C., S.C.F. and C.E.M.S solved the crystal structures. L.C. and S.C.F. performed all biochemical experiments. K.B. and I.J.C.V. isolated substrates and products. J.F. solved the structure of the enzymatic substrates and developed the enzymatic mechanisms.

Corresponding authors

Correspondence to David M. Lawson or Sarah E. O’Connor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Figs. 1–25 and Note.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caputi, L., Franke, J., Bussey, K. et al. Structural basis of cycloaddition in biosynthesis of iboga and aspidosperma alkaloids. Nat Chem Biol 16, 383–386 (2020). https://doi.org/10.1038/s41589-019-0460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0460-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing