Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs

Abstract

Cholinesterase inhibitors, the current frontline symptomatic treatment for Alzheimer’s disease (AD), are associated with low efficacy and adverse effects. M1 muscarinic acetylcholine receptors (M1 mAChRs) represent a potential alternate therapeutic target; however, drug discovery programs focused on this G protein-coupled receptor (GPCR) have failed, largely due to cholinergic adverse responses. Employing novel chemogenetic and phosphorylation-deficient, G protein-biased, mouse models, paired with a toolbox of probe molecules, we establish previously unappreciated pharmacologically targetable M1 mAChR neurological processes, including anxiety-like behaviors and hyper-locomotion. By mapping the upstream signaling pathways regulating these responses, we determine the importance of receptor phosphorylation-dependent signaling in driving clinically relevant outcomes and in controlling adverse effects including ‘epileptic-like’ seizures. We conclude that M1 mAChR ligands that promote receptor phosphorylation-dependent signaling would protect against cholinergic adverse effects in addition to driving beneficial responses such as learning and memory and anxiolytic behavior relevant for the treatment of AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of the M1-DREADD knock-in mouse.
Fig. 2: Altered phenotypes of M1-DREADD mice are corrected by CNO.
Fig. 3: Generation of the G protein-biased M1-PD knock-in mouse.
Fig. 4: Mapping of bimodal signaling to M1 mAChR physiological responses.
Fig. 5: M1-DREADD PD mice show epileptic-like seizures.
Fig. 6: Pilocarpine shows G protein bias, whereas GSK1034702 is not biased.

Similar content being viewed by others

Data availability

All data are available from the authors or are available through the University of Glasgow online data repository.

References

  1. Bartus, R. T., Dean, R. L.III., Beer, B. & Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408–414 (1982).

    CAS  PubMed  Google Scholar 

  2. Courtney, C. et al. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet 363, 2105–2115 (2004).

    CAS  PubMed  Google Scholar 

  3. Inglis, F. The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. Int. J. Clin. Pract 127, 45–63 (2002).

    CAS  Google Scholar 

  4. Bradley, S. J. et al. M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. J. Clin. Invest. 127, 487–499 (2017).

    PubMed  Google Scholar 

  5. Digby, G. J. et al. Novel allosteric agonists of M1 muscarinic acetylcholine receptors induce brain region-specific responses that correspond with behavioral effects in animal models. J. Neurosci. 32, 8532–8544 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghoshal, A. et al. Potentiation of M1 muscarinic receptor reverses plasticity deficits and negative and cognitive symptoms in a schizophrenia mouse model. Neuropsychopharmacology 41, 598–610 (2016).

    CAS  PubMed  Google Scholar 

  7. Moran, S. P. et al. M1-positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacology 43, 1763–1771 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shirey, J. K. et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J. Neurosci. 29, 14271–14286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bodick, N. C. et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch. Neurol. 54, 465–473 (1997).

    CAS  PubMed  Google Scholar 

  10. Bradley, S. J. et al. Bitopic binding mode of an M1 muscarinic acetylcholine receptor agonist associated with adverse clinical trial outcomes. Mol. Pharmacol. 93, 645–656 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Budzik, B. et al. Novel N-substituted benzimidazolones as potent, selective, CNS-penetrant, and orally active M1 mAChR agonists. ACS Med. Chem. Lett. 1, 244–248 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nathan, P. J. et al. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int. J. Neuropsychopharmacol. 16, 721–731 (2013).

    CAS  PubMed  Google Scholar 

  13. Conn, P. J., Christopoulos, A. & Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 8, 41–54 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Davoren, J. E. et al. Design and synthesis of γ- and δ-lactam M1 positive allosteric modulators (PAMs): convulsion and cholinergic toxicity of an M1-selective PAM with weak agonist activity. J. Med. Chem. 60, 6649–6663 (2017).

    CAS  PubMed  Google Scholar 

  15. Rook, J. M. et al. Diverse effects on M1 signaling and adverse effect liability within a series of M1 Ago-PAMs. ACS Chem. Neurosci. 8, 866–883 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nickols, H. H. & Conn, P. J. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol. Dis. 61, 55–71 (2014).

    PubMed  Google Scholar 

  17. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Marlo, J. E. et al. Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol. Pharmacol. 75, 577–588 (2009).

    CAS  PubMed  Google Scholar 

  19. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    PubMed  Google Scholar 

  20. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson, K. J. et al. DREADD agonist 21 is an effective agonist for muscarinic-based DREADDs in vitro and in vivo. ACS Pharm. Transl. Sci. 1, 61–72 (2018).

    CAS  Google Scholar 

  22. Gerber, D. J. et al. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc. Natl Acad. Sci. USA 98, 15312–15317 (2001).

    CAS  PubMed  Google Scholar 

  23. Bradley, S. J. et al. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction. Proc. Natl Acad. Sci. USA 113, 4524–4529 (2016).

    CAS  PubMed  Google Scholar 

  24. Reiter, E. & Lefkowitz, R. J. GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. 17, 159–165 (2006).

    CAS  PubMed  Google Scholar 

  25. Butcher, A. J. et al. An antibody biosensor establishes the activation of the M1 muscarinic acetylcholine receptor during learning and memory. J. Biol. Chem. 291, 8862–8875 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gautam, D. et al. Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol. Pharmacol. 66, 260–267 (2004).

    CAS  PubMed  Google Scholar 

  27. Alt, A. et al. Evidence for classical cholinergic toxicity associated with selective activation of M1 muscarinic receptors. J. Pharmacol. Exp. Ther. 356, 293–304 (2016).

    CAS  PubMed  Google Scholar 

  28. Bodick, N. C. et al. The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 11, S16–S22 (1997).

    CAS  PubMed  Google Scholar 

  29. Davoren, J. E. et al. Discovery of the potent and selective M1 PAM-agonist N-[(3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl]-5-methyl-4-[4-(1,3-thiazol-4-yl)benzyl]pyridine-2-carboxamide (PF-06767832): evaluation of efficacy and cholinergic side effects. J. Med. Chem. 59, 6313–6328 (2016).

    CAS  PubMed  Google Scholar 

  30. Felder, C. C. et al. Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology 136, 449–458 (2018).

    CAS  PubMed  Google Scholar 

  31. Cavalheiro, E. A., Santos, N. F. & Priel, M. R. The pilocarpine model of epilepsy in mice. Epilepsia 37, 1015–1019 (1996).

    CAS  PubMed  Google Scholar 

  32. Levesque, M., Avoli, M. & Bernard, C. Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J. Neurosci. Methods 260, 45–52 (2016).

    PubMed  Google Scholar 

  33. Turski, W. A. et al. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav. Brain Res. 9, 315–335 (1983).

    CAS  PubMed  Google Scholar 

  34. Mogg, A. J. et al. In vitro pharmacological characterization and in vivo validation of LSN3172176 a novel M1 selective muscarinic receptor agonist tracer molecule for positron emission tomography (PET). J. Pharmacol. Exp. Ther. 365, 602–613 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bender, A. M., Jones, C. K. & Lindsley, C. W. Classics in chemical neuroscience: xanomeline. ACS Chem. Neurosci. 8, 435–443 (2017).

    CAS  PubMed  Google Scholar 

  36. Prihandoko, R. et al. Distinct phosphorylation clusters determine the signaling outcome of free fatty acid receptor 4/G protein-coupled receptor 120. Mol. Pharmacol. 89, 505–520 (2016).

    CAS  PubMed  Google Scholar 

  37. Gurevich, V. V. & Gurevich, E. V. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol. Ther. 110, 465–502 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shukla, A. K. et al. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497, 137–141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, X. E. et al. Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170, 457–469 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mayer, D. et al. Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation. Nat. Commun. 10, 1261 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Staus, D. P. et al. Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling. Proc. Natl Acad. Sci. USA 115, 3834–3839 (2018).

    CAS  PubMed  Google Scholar 

  42. Butcher, A. J. et al. Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J. Biol. Chem. 286, 11506–11518 (2011).

    CAS  PubMed  Google Scholar 

  43. Nobles, K. N. et al. Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal. 4, ra51 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kong, K. C. et al. M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. Proc. Natl Acad. Sci. USA 107, 21181–21186 (2010).

    CAS  PubMed  Google Scholar 

  45. Poulin, B. et al. The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc. Natl Acad. Sci. USA 107, 9440–9445 (2010).

    CAS  PubMed  Google Scholar 

  46. Lefkowitz, R. J. A brief history of G-protein coupled receptors (Nobel Lecture). Angew. Chem. 52, 6366–6378 (2013).

    CAS  Google Scholar 

  47. Lefkowitz, R. J. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci. 25, 413–422 (2004).

    CAS  PubMed  Google Scholar 

  48. Miyakawa, T., Yamada, M., Duttaroy, A. & Wess, J. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J. Neurosci. 21, 5239–5250 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kurimoto, E. et al. An approach to discovering novel muscarinic M1 receptor positive allosteric modulators with potent cognitive improvement and minimized gastrointestinal dysfunction. J. Pharmacol. Exp. Ther. 364, 28–37 (2018).

    CAS  PubMed  Google Scholar 

  50. Rook, J. M. et al. A novel M1 PAM VU0486846 exerts efficacy in cognition models without displaying agonist activity or cholinergic toxicity. ACS Chem. Neurosci. 9, 2274–2285 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Challiss, R. A., Batty, I. H. & Nahorski, S. R. Mass measurements of inositol(1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization. Biochem. Biophys. Res. Commun. 157, 684–691 (1988).

    CAS  PubMed  Google Scholar 

  52. Arraj, M. & Lemmer, B. Circadian rhythms in heart rate, motility, and body temperature of wild-type C57 and eNOS knock-out mice under light-dark, free-run, and after time zone transition. Chronobiol. Int. 23, 795–812 (2006).

    CAS  PubMed  Google Scholar 

  53. Lyngholm, D. & Sakata, S. Cre-dependent optogenetic transgenic mice without early age-related hearing loss. Front. Aging Neurosci. 11, 29 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. van der Westhuizen, E. T., Breton, B., Christopoulos, A. & Bouvier, M. Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy. Mol. Pharmacol. 85, 492–509 (2014).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work is funded by a University of Glasgow Lord Kelvin Adam Smith Fellowship (to S.J.B.), an MRC MICA agreement MR/P019366/1 (to A.B.T., S.J.B., M.R. and C.M.), a Wellcome Trust Collaborative Award 201529/Z/16/Z (to A.B.T., P.V., A.C., L.D., C.M. and P.M.S.), SULSA Dementia Seed Funding (to A.B.T., P.V. and S.S.), ARUK PPG2017B-005 (to S.S.) and an MRC iCASE studentship with Eli Lilly (M.S.). This work was also supported by an MRC group leader program awarded to A.B.T. at the MRC Toxicology Unit. We acknowledge support from the BSU facilities at the Cancer Research UK Beatson Institute (C596/A17196) and the Biological Services at the University of Glasgow. We also thank M. Gaellman for support to the Tobin laboratory.

Author information

Authors and Affiliations

Authors

Contributions

S.J.B. and A.B.T. devised the program of work and wrote the paper with assistance from all other authors. S.J.B., A.B.T., R.A.J.C., L.M.B., E.M.R., S.S., P.M.S., A.J.M. and A.C. designed and advised on experiments. L.D. conducted receptor phosphorylation studies. C.M. and L.F. managed the mouse colony and conducted mouse behavioral experiments with S.J.B. P.V., C.A.W. and L.F. conducted the EEG recording studies. M.S., M.R. and R.M. conducted signaling and internalization studies. K.A.S., E.C. and V.N.B. conducted in vivo receptor occupancy and in vivo ligand activity assays. K.G. and D.A.S. conducted arrestin assays.

Corresponding authors

Correspondence to Sophie J. Bradley or Andrew B. Tobin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1–9.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradley, S.J., Molloy, C., Valuskova, P. et al. Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs. Nat Chem Biol 16, 240–249 (2020). https://doi.org/10.1038/s41589-019-0453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0453-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research