Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reprogramming fatty acyl specificity of lipid kinases via C1 domain engineering

Abstract

C1 domains are lipid-binding modules that regulate membrane activation of kinases, nucleotide exchange factors and other C1-containing proteins to trigger signal transduction. Despite annotation of typical C1 domains as diacylglycerol (DAG) and phorbol ester sensors, the function of atypical counterparts remains ill-defined. Here, we assign a key role for atypical C1 domains in mediating DAG fatty acyl specificity of diacylglycerol kinases (DGKs) in live cells. Activity-based proteomics mapped C1 probe binding as a principal differentiator of type 1 DGK active sites that combined with global metabolomics revealed a role for C1s in lipid substrate recognition. Protein engineering by C1 domain swapping demonstrated that exchange of typical and atypical C1s is functionally tolerated and can directly program DAG fatty acyl specificity of type 1 DGKs. Collectively, we describe a protein engineering strategy for studying metabolic specificity of lipid kinases to assign a role for atypical C1 domains in cell metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LC–MS/MS metabolomics for deciphering DGK isoform fatty acyl specificity.
Fig. 2: Assigning DAG substrate specificity to the DGK superfamily.
Fig. 3: Activity-based profiling of functional binding sites in type 1 DGK active sites.
Fig. 4: C1 domains are necessary and a druggable site for modulating DGKα metabolic function.
Fig. 5: Programming DAG substrate specificity of DGKs in live cells by C1 domain engineering.
Fig. 6: Lattice light-sheet microscopy shows that DGK chimeras are not localized based on C1 identity.

Similar content being viewed by others

Data availability

All data produced or analyzed for this study are included in the published article (and its supplementary information files) or are available from the corresponding author upon reasonable request.

Code availability

All code is available upon reasonable request from the corresponding author.

References

  1. Aimon, S. et al. Membrane shape modulates transmembrane protein distribution. Dev. Cell 28, 212–218 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. Lee, M. C. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122, 605–617 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Almena, M. & Mérida, I. Shaping up the membrane: diacylglycerol coordinates spatial orientation of signaling. Trends Biochem. Sci. 36, 593–603 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y., Su, Y. & Wang, X. Phosphatidic acid-mediated signaling. Adv. Exp. Med. Biol. 991, 159–176 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. van Blitterswijk, W. J. & Houssa, B. Properties and functions of diacylglycerol kinases. Cell Signal. 12, 595–605 (2000).

    Article  PubMed  Google Scholar 

  7. Franks, C. E., Campbell, S. T., Purow, B. W., Harris, T. E. & Hsu, K. L. The ligand binding landscape of diacylglycerol kinases. Cell Chem. Biol. 24, 870–880 (2017). e875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamada, K., Sakane, F., Matsushima, N. & Kanoh, H. EF-hand motifs of alpha, beta and gamma isoforms of diacylglycerol kinase bind calcium with different affinities and conformational changes. Biochem. J. 321, 59–64 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abramovici, H., Hogan, A. B., Obagi, C., Topham, M. K. & Gee, S. H. Diacylglycerol kinase-ζ localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins. Mol. Biol. Cell 14, 4499–4511 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kume, A. et al. The pleckstrin homology domain of diacylglycerol kinase η strongly and selectively binds to phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 291, 8150–8161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Imai, S., Sakane, F. & Kanoh, H. Phorbol ester-regulated oligomerization of diacylglycerol kinase δ linked to its phosphorylation and translocation. J. Biol. Chem. 277, 35323–35332 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Harada, B. T. et al. Regulation of enzyme localization by polymerization: polymer formation by the SAM domain of diacylglycerol kinase δ1. Structure 16, 380–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Jing, W. et al. T cells deficient in diacylglycerol kinase ζ are resistant to PD-1 inhibition and help create persistent host immunity to leukemia. Cancer Res. 77, 5676–5686 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Olenchock, B. A. et al. Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat. Immunol. 7, 1174–1181 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Zha, Y. et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-ɑ. Nat. Immunol. 7, 1166–1173 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Merida, I., Andrada, E., Gharbi, S. I. & Avila-Flores, A. Redundant and specialized roles for diacylglycerol kinases ɑ and ζ in the control of T cell functions. Sci. Signal. 8, re6 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Prinz, P. U. et al. High DGK-alpha and disabled MAPK pathways cause dysfunction of human tumor-infiltrating CD8+ T cells that is reversible by pharmacologic intervention. J. Immunol. 188, 5990–6000 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Riese, M. J. et al. Enhanced effector responses in activated CD8+ T cells deficient in diacylglycerol kinases. Cancer Res. 73, 3566–3577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo, R. et al. Synergistic control of T cell development and tumor suppression by diacylglycerol kinase ɑ and ζ. Proc. Natl Acad. Sci. USA 105, 11909–11914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pankratz, N. et al. Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum. Genet. 124, 593–605 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Simon-Sanchez, J. et al. Genome-wide association study confirms extant PD risk loci among the Dutch. Eur. J. Hum. Genet. 19, 655–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baum, A. E. et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol. Psychiatry 13, 197–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Weber, H. et al. Cross-disorder analysis of bipolar risk genes: further evidence of DGKH as a risk gene for bipolar disorder, but also unipolar depression and adult ADHD. Neuropsychopharmacology 36, 2076–2085 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Squassina, A. et al. The diacylglycerol kinase eta gene and bipolar disorder: a replication study in a Sardinian sample. Mol. Psychiatry 14, 350–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Zeng, Z. et al. Common SNPs and haplotypes in DGKH are associated with bipolar disorder and schizophrenia in the Chinese Han population. Mol. Psychiatry 16, 473–475 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Moya, P. R., Murphy, D. L., McMahon, F. J. & Wendland, J. R. Increased gene expression of diacylglycerol kinase eta in bipolar disorder. Int J. Neuropsychopharmacol. 13, 1127–1128 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Melen, E. et al. Analyses of shared genetic factors between asthma and obesity in children. J. Allergy Clin. Immunol. 126, 631–637 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laramie, J. M. et al. Multiple genes influence BMI on chromosome 7q31-34: the NHLBI Family Heart Study. Obes. (Silver Spring) 17, 2182–2189 (2009).

    Article  Google Scholar 

  29. Jiang, L. Q. et al. Diacylglycerol kinase-δ regulates AMPK signaling, lipid metabolism, and skeletal muscle energetics. Am. J. Physiol. Endocrinol. Metab. 310, E51–E60 (2016).

    Article  PubMed  Google Scholar 

  30. Lowe, C. E. et al. Knockdown of diacylglycerol kinase delta inhibits adipocyte differentiation and alters lipid synthesis. Obes. (Silver Spring) 21, 1823–1829 (2013).

    Article  CAS  Google Scholar 

  31. Chibalin, A. V. et al. Downregulation of diacylglycerol kinase delta contributes to hyperglycemia-induced insulin resistance. Cell 132, 375–386 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Z., Chang, G. Q. & Leibowitz, S. F. Diacylglycerol kinase ζ in hypothalamus interacts with long form leptin receptor. Relation to dietary fat and body weight regulation. J. Biol. Chem. 276, 5900–5907 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Lung, M. et al. Diacylglycerol kinase ε is selective for both acyl chains of phosphatidic acid or diacylglycerol. J. Biol. Chem. 284, 31062–31073 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shulga, Y. V., Topham, M. K. & Epand, R. M. Study of arachidonoyl specificity in two enzymes of the PI cycle. J. Mol. Biol. 409, 101–112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shulga, Y. V., Topham, M. K. & Epand, R. M. Substrate specificity of diacylglycerol kinase-epsilon and the phosphatidylinositol cycle. FEBS Lett. 585, 4025–4028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rodriguez de Turco, E. B. et al. Diacylglycerol kinase ε regulates seizure susceptibility and long-term potentiation through arachidonoyl–inositol lipid signaling. Proc. Natl Acad. Sci. USA 98, 4740–4745 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marquez, V. E. & Blumberg, P. M. Synthetic diacylglycerols (DAG) and DAG-lactones as activators of protein kinase C (PK-C). Acc. Chem. Res. 36, 434–443 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Das, J. & Rahman, G. M. C1 domains: structure and ligand-binding properties. Chem. Rev. 114, 12108–12131 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Ware, T. B., Shin, M. & Hsu, K.-L. Metabolomics analysis of lipid metabolizing enzyme activity. Methods Enzymol. 626, 407–428 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pettitt, T. R. & Wakelam, M. J. O. Diacylglycerol kinase ε, but not ζ, selectively removes polyunsaturated diacylglycerol, inducing altered protein kinase C distribution in vivo. J. Biol. Chem. 274, 36181–36186 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Franks, C. E. & Hsu, K. L. Activity-based kinome profiling using chemical proteomics and ATP acyl phosphates. Curr. Protoc. Chem. Biol. 11, e72 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7, 952–958 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. McCloud, R. L. et al. Deconstructing lipid kinase inhibitors by chemical proteomics. Biochemistry 57, 231–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Boroda, S., Niccum, M., Raje, V., Purow, B. W. & Harris, T. E. Dual activities of ritanserin and R59022 as DGKɑ inhibitors and serotonin receptor antagonists. Biochem. Pharm. 123, 29–39 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Imai, S., Kai, M., Yasuda, S., Kanoh, H. & Sakane, F. Identification and characterization of a novel human type II diacylglycerol kinase, DGKκ. J. Biol. Chem. 280, 39870–39881 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Klauck, T. M., Xu, X., Mousseau, B. & Jaken, S. Cloning and characterization of a glucocorticoid-induced diacylglycerol kinase. J. Biol. Chem. 271, 19781–19788 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Sakane, F., Imai, S., Kai, M., Wada, I. & Kanoh, H. Molecular cloning of a novel diacylglycerol kinase isozyme with a pleckstrin homology domain and a C-terminal tail similar to those of the EPH family of protein-tyrosine kinases. J. Biol. Chem. 271, 8394–8401 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Bozelli, J. C. Jr. et al. Membrane curvature allosterically regulates the phosphatidylinositol cycle, controlling its rate and acyl-chain composition of its lipid intermediates. J. Biol. Chem. 293, 17780–17791 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Breitkopf, S. B. et al. A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source. Metabolomics 13, 30 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Goujon, M. et al. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38, W695–W699 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Ross and all members of the Hsu Laboratory for helpful discussions. We thank S. Campbell for assistance in designing DGK chimera plasmids. This work was supported by the University of Virginia (start-up funds to K.-L.H.), the National Institutes of Health (grant nos. DA035864 and DA043571 to K.-L.H.; grant no. GM801868 to T.B.W.; grant no. GM007055 to C.E.F.), the US Department of Defense (grant no. W81XWH-17-1-0487 to K.-L.H.), an NCI Cancer Center Support Grant (grant no. 5P30CA044579-27 to K.-L.H. and T.E.H.) and the Schiff Foundation (Brain Tumor Research Grant to K.-L.H. and T.E.H.). Images were acquired using the W.M. Keck Center for Cellular Imaging Zeiss 780 Confocal microscopy system at UVA (NIH OD016446).

Author information

Authors and Affiliations

Authors

Contributions

T.B.W. and K.-L.H. conceived of the project, designed experiments and analyzed data. T.B.W. performed all lipidomics experiments by mass spectrometry and analyzed all data from these studies. T.B.W. performed cloning and expression of proteins, conducted inhibition studies and performed biochemical assays. T.B.W. conducted cellular studies. T.B.W. performed all immunofluorescence experiments and analyzed results from these studies. T.B.W. performed bioinformatics analysis of DGK targeted metabolomics data. C.E.F. performed chemical proteomic experiments and data analysis. M.E.G. and T.E.H. performed liposome substrate assay and data analysis. M.Z. and A.G. performed lattice light-sheet microscopy and data analysis. K.B.K. and K.S.P. performed shRNA knockdown of endogenous DGKα in A549 cells. T.B.W. and K.-L.H. wrote the manuscript.

Corresponding author

Correspondence to Ku-Lung Hsu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1–31.

Reporting Summary

Supplementary Note

DGK C1 chimera sequence

Supplementary Dataset 1

a, Results from LipidSearch analysis of both positive and negative mode ddMS2 data from DGKε-overexpressed HEK293T lipidomes. Job results for identified lipid species are filtered as outlined in Supplementary Fig. 5. Data displayed were used to generate Fig. 1b. b, Abundances of identified DAG species from DGKε-overexpressed HEK293T lipidomes following a targeted PRM analysis identifying the NH4+ adduct. Normalization is accomplished using the detected SAG-d8 internal standard and protein concentration. Data displayed were used to generate Fig. 1d. c, log2(fold change) of DAG abundances from various DGK isoforms overexpressed in HEK293T cells. All DGK isoforms are the human variant. Data displayed were used to generate Fig. 2a,b and Supplementary Figs. 8, 9 and 11. d, SILAC ratios and modified peptides of soluble proteins from DMSO (light)/ATP (heavy) treatments of HEK293T cells overexpressed with type 1 rat DGK isoforms with the ATP acyl phosphate probe. Data displayed were used to generate Fig. 3. e, Abundances of identified DAG species from type 1 human DGK isoform-overexpressed HEK293T lipidomes following a targeted PRM analysis identifying the NH4+ adduct. Data displayed were used to generate Fig. 4a. f, Abundances of identified DAG species from A549 lipidomes following doxycycline-induced shRNA knockdown of DGKα. Data displayed were used to generate Fig. 4b. g, Abundances of identified DAG species from rat DGKα WT- and lysine mutant-overexpressed HEK293T lipidomes following a targeted PRM analysis identifying the NH4+ adduct. Data displayed were used to generate Fig. 4c. h, Abundances of identified DAG species from rat DGKα WT-overexpressed HEK293T lipidomes treated in situ with ritanserin and ketanserin. Data displayed were used to generate Fig. 4d. i, Abundances of identified DAG species from type 1 rat DGK WT- and C1 chimera-overexpressed HEK293T lipidomes following a targeted PRM analysis identifying the NH4+ adduct. Data displayed were used to generate Fig. 5. j, log2(fold change) of PA abundances from various DGK isoforms overexpressed in HEK293T cells. All DGK isoforms are the human variant. Data displayed were used to generate Supplementary Figs. 10 and 11. k, Phosphorylation activity studies of type 1 DGK WT and chimera isoforms overexpressed in HEK293T soluble proteomes. Formation of radiolabeled [γ32-P] PA product is used to determine in vitro DGK activity from liposome substrates. Data displayed were used to generate Supplementary Fig. 19. l, log2(fold change) of DAG abundances from type 1 DGK isoforms overexpressed in HEK293T cells. All DGK isoforms are the rat variant. Data displayed were used to generate Supplementary Fig. 20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ware, T.B., Franks, C.E., Granade, M.E. et al. Reprogramming fatty acyl specificity of lipid kinases via C1 domain engineering. Nat Chem Biol 16, 170–178 (2020). https://doi.org/10.1038/s41589-019-0445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0445-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research