Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chain alignment of collagen I deciphered using computationally designed heterotrimers


The most abundant member of the collagen protein family, collagen I (also known as type I collagen; COL1), is composed of one unique (chain B) and two similar (chain A) polypeptides that self-assemble with one amino acid offset into a heterotrimeric triple helix. Given the offset, chain B can occupy either the leading (BAA), middle (ABA) or trailing (AAB) position of the triple helix, yielding three isomeric biomacromolecules with different protein recognition properties. Despite five decades of intensive research, there is no consensus on the position of chain B in COL1. Here, three triple-helical heterotrimers that each contain a putative von Willebrand factor (VWF) and discoidin domain receptor (DDR) recognition sequence from COL1 were designed with chain B permutated in all three positions. AAB demonstrated a strong preference for both VWF and DDR, and also induced higher levels of cellular DDR phosphorylation. Thus, we resolve this long-standing mystery and show that COL1 adopts an AAB register.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Design and structure of register-specific heterotrimers.
Fig. 2: Binding affinity of registers for collagen-binding proteins.
Fig. 3: Peptide-induced DDR1 and DDR2 autophosphorylation.
Fig. 4: Nine possible modes for binding of COL1 to DDR2 and VWF A3.

Data availability

Atomic coordinates of AAB (6Q3P), ABA (6Q41) and BAA (6Q43) crystal structures have been deposited with the Protein Data Bank. Raw data associated with Figs. 1,2,3 can be provided by the corresponding author upon reasonable request.

Code availability

The code for computational design of heterotrimers may be requested from the corresponding author.


  1. 1.

    Leitinger, B. Transmembrane collagen receptors. Annu. Rev. Cell Dev. Biol. 27, 265–290 (2011).

    Article  CAS  Google Scholar 

  2. 2.

    Rosini, S. et al. Thrombospondin-1 promotes matrix homeostasis by interacting with collagen and lysyl oxidase precursors and collagen cross-linking sites. Sci. Signal. 11, eaar2566 (2018).

    Article  CAS  Google Scholar 

  3. 3.

    Lankhof, H. et al. A3 domain is essential for interaction of von Willebrand factor with collagen type III. Thromb. Haemost. 75, 950–958 (1996).

    Article  CAS  Google Scholar 

  4. 4.

    Santoro, S. A. Preferential binding of high molecular weight forms of von Willebrand factor to fibrillar collagen. Biochim. Biophys. Acta 756, 123–126 (1983).

    Article  CAS  Google Scholar 

  5. 5.

    De Meyer, S. F., Stoll, G., Wagner, D. D. & Kleinschnitz, C. von Willebrand factor: an emerging target in stroke therapy. Stroke 43, 599–606 (2012).

    Article  CAS  Google Scholar 

  6. 6.

    Fu, H. L. et al. Discoidin domain receptors: unique receptor tyrosine kinases in collagen-mediated signaling. J. Biol. Chem. 288, 7430–7437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Gross, O. et al. DDR1-deficient mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. Kidney Int. 66, 102–111 (2004).

    Article  CAS  Google Scholar 

  8. 8.

    Vogel, W. F. et al. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol. Cell. Biol. 21, 2906–2917 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Hou, G., Vogel, W. & Bendeck, M. P. The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J. Clin. Invest. 107, 727–735 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Labrador, J. P. et al. The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep. 2, 446–452 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Valiathan, R. R. et al. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev. 31, 295–321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Raynal, N. et al. Use of synthetic peptides to locate novel integrin α2β1-binding motifs in human collagen III. J. Biol. Chem. 281, 3821–3831 (2006).

    Article  CAS  Google Scholar 

  13. 13.

    Farndale, R. W. et al. Cell–collagen interactions: the use of peptide Toolkits to investigate collagen–receptor interactions. Biochem. Soc. Trans. 36, 241–250 (2008).

    Article  CAS  Google Scholar 

  14. 14.

    Kim, J. K. et al. A novel binding site in collagen type III for integrins α1β1 and α2β1. J. Biol. Chem. 280, 32512–32520 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. & Liddington, R. C. Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hamaia, S. W. et al. Unique charge-dependent constraint on collagen recognition by integrin α10β1. Matrix Biol. 59, 80–94 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Brondijk, T. H. C., Bihan, D., Farndale, R. W. & Huizinga, E. G. Implications for collagen I chain registry from the structure of the collagen von Willebrand factor A3 domain complex. Proc. Natl Acad. Sci. USA 109, 5253–5258 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Xu, H. et al. Collagen binding specificity of the discoidin domain receptors: binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1. Matrix Biol. 30, 16–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Konitsiotis, A. D. et al. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J. Biol. Chem. 283, 6861–6868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Manka, S. W. et al. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc. Natl Acad. Sci. USA 109, 12461–12466 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hohenester, E., Sasaki, T., Giudici, C., Farndale, R. W. & Bächinger, H. P. Structural basis of sequence-specific collagen recognition by SPARC. Proc. Natl Acad. Sci. USA 105, 18273–18277 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Zhou, L. et al. Structural basis for collagen recognition by the immune receptor OSCAR. Blood 127, 529–537 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Munnix, I. C. A. et al. Collagen-mimetic peptides mediate flow-dependent thrombus formation by high- or low-affinity binding of integrin α2β1 and glycoprotein VI. J. Thromb. Haemost. 6, 2132–2142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lebbink, R. J. et al. Identification of multiple potent binding sites for human leukocyte associated Ig-like receptor LAIR on collagens II and III. Matrix Biol. 28, 202–210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Piez, K. A., Eigner, E. A. & Lewis, M. S. The chromatographic separation and amino acid composition of the subunits of several collagens. Biochemistry 2, 58–66 (1963).

    Article  CAS  Google Scholar 

  26. 26.

    Piez, K. A. & Trus, B. L. Sequence regularities and packing of collagen molecules. J. Mol. Biol. 122, 419–432 (1978).

    Article  CAS  Google Scholar 

  27. 27.

    Traub, W. & Fietzek, P. P. Contribution of the α2 chain to the molecular stability of collagen. FEBS Lett. 68, 245–249 (1976).

    Article  CAS  Google Scholar 

  28. 28.

    Bender, E., Silver, H., Hayashi, K. & Trelstad, R. L. Type I collagen segment long spacing banding patterns. J. Biol. Chem. 257, 9653–9657 (1982).

  29. 29.

    Orgel, J. P. R. O., Irving, T. C., Miller, A. & Wess, T. J. Microfibrillar structure of type I collagen in situ. Proc. Natl Acad. Sci. USA 103, 9001–9005 (2006).

    Article  CAS  Google Scholar 

  30. 30.

    Lisman, T. et al. A single high-affinity binding site for von Willebrand factor in collagen III, identified using synthetic triple-helical peptides. Blood 108, 3753–3756 (2006).

    Article  CAS  Google Scholar 

  31. 31.

    Jalan, A. A. & Hartgerink, J. D. Simultaneous control of composition and register of an AAB-type collagen heterotrimer. Biomacromolecules 14, 179–185 (2013).

    Article  CAS  Google Scholar 

  32. 32.

    Xu, F., Zhang, L., Koder, R. L. & Nanda, V. De novo self-assembling collagen heterotrimers using explicit positive and negative design. Biochemistry 49, 2307–2316 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Zheng, H. et al. How electrostatic networks modulate specificity and stability of collagen. Proc. Natl Acad. Sci. USA 115, 6207–6212 (2018).

    Article  CAS  Google Scholar 

  34. 34.

    Gauba, V. & Hartgerink, J. D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 129, 2683–2690 (2007).

    Article  CAS  Google Scholar 

  35. 35.

    Fallas, J. A. & Hartgerink, J. D. Computational design of self-assembling register-specific collagen heterotrimers. Nat. Commun. 3, 1087–1088 (2012).

    Article  CAS  Google Scholar 

  36. 36.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  37. 37.

    Carafoli, F. et al. Crystallographic insight into collagen recognition by discoidin domain receptor 2. Structure 17, 1573–1581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Jalan, A. A., Demeler, B. & Hartgerink, J. D. Hydroxyproline-free single composition ABC collagen heterotrimer. J. Am. Chem. Soc. 135, 6014–6017 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Li, I.-C. et al. Org. Lett. 21(14), 5480–5484 (2019).

  40. 40.

    Persikov, A. V., Ramshaw, J. A. M., Kirkpatrick, A. & Brodsky, B. Amino acid propensities for the collagen triple-helix. Biochemistry 39, 14960–14967 (2000).

    Article  CAS  Google Scholar 

  41. 41.

    Houdijk, W. P. M., Sakariassen, K. S., Nievelstein, P. F. E. M. & Sixma, J. J. Role of factor VIII-von Willebrand factor and fibronectin in the interaction of platelets in flowing blood with monomeric and fibrillar human collagen types I and III. J. Clin. Invest. 75, 531–540 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Vogel, W., Gish, G. D., Alves, F. & Pawson, T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell 1, 13–23 (1997).

    Article  CAS  Google Scholar 

  43. 43.

    Bodian, D. L., Madhan, B., Brodsky, B. & Klein, T. E. Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations. Biochemistry 47, 5424–5432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Leitinger, B. Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2. J. Biol. Chem. 278, 16761–16769 (2003).

    Article  CAS  Google Scholar 

  45. 45.

    Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D. 67, 293–302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D. 74, 85–97 (2018).

    Article  CAS  Google Scholar 

  47. 47.

    Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D. 62, 72–82 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Evans, P. R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D. 67, 282–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Rainey, J. K. & Goh, M. C. An interactive triple-helical collagen builder. Bioinformatics 20, 2458–2459 (2004).

    Article  CAS  Google Scholar 

  51. 51.

    Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  52. 52.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. 60, 2126–2132 (2004).

    Article  CAS  Google Scholar 

  53. 53.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  54. 54.

    Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D. 73, 148–157 (2017).

    Article  CAS  Google Scholar 

  55. 55.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  56. 56.

    Merritt, E. A. Comparing anisotropic displacement parameters in protein structures. Acta Crystallogr. D. 55, 1997–2004 (1999).

    Article  CAS  Google Scholar 

  57. 57.

    Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  58. 58.

    Fogh, R. et al. The ccpn project: an interim report on a data model for the nmr community. Nat. Struct. Biol. 9, 416–418 (2002).

    Article  CAS  Google Scholar 

  59. 59.

    Schlick, T. L., Ding, Z., Kovacs, E. W. & Francis, M. B. Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 127, 3718–3723 (2005).

    Article  CAS  Google Scholar 

  60. 60.

    Xu, H. et al. Normal activation of discoidin domain receptor 1 mutants with disulfide cross-links, insertions, or deletions in the extracellular juxtamembrane region: mechanistic implications. J. Biol. Chem. 289, 13565–13574 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Juskaite, V., Corcoran, D. S. & Leitinger, B. Collagen induces activation of DDR1 through lateral dimer association and phosphorylation between dimers. elife 6, e25716 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references


A.A.J. was supported by Newton International Fellowship (NF140721) granted jointly by the Royal Society, the British Academy and the Academy of Medical Sciences. D.S. was supported by a PhD studentship from the Imperial College London–Royal Holloway BBSRC Doctoral Training Partnership. J.D.H. and D.R.W. were supported in part by the Welch Foundation (C1557) and the National Science Foundation (CHE1709631). R.W.F. was supported by a British Heart Foundation programme grant (RG/15/4/31268). The authors thank D. Chirgadze and M. Hyvonen in the Department of Biochemistry at the University of Cambridge for X-ray crystallography support and crystallographic data refinement, respectively; E. Hohenester in the Department of Life Sciences at Imperial College London for helpful discussion on solid-phase binding assays; and J.-D. Malcor and A. Bonna in the Department of Biochemistry at the University of Cambridge for support in peptide synthesis. The authors also thank Diamond Light Source for beamtime (proposal mx14043) and the staff of beamlines I03, I04 and I24 for assistance with crystal testing and data collection.

Author information




A.A.J. and R.W.F. conceived the project. A.A.J. synthesized and characterized the peptides, obtained the heterotrimer crystals and solved their crystal structures, developed the methodology for covalent capture of heterotrimers and their subsequent purification, performed the solid-phase binding assays and analyzed the CD, NMR, MS and solid-phase binding assay data. J.D.H. wrote the code for computational design of heterotrimers. B.L. expressed DDR–Fc fusion constructs and analyzed cellular activation experiments performed by D.S. S.W.H. expressed the recombinant VWF A3 domain, and E.J.H. assisted in optimization of solid-phase assays. P.B. co-solved and refined the crystal structure of AAB. K.S. planned the NMR experiments and co-analyzed the NMR and CD data. D.R.W. wrote the script for the analysis of the helical twist of heterotrimers. A.A.J., R.W.F. and B.L. co-wrote the manuscript with input from other authors.

Corresponding author

Correspondence to Abhishek A. Jalan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Tables 1–6, Supplementary Figs. 1–8

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jalan, A.A., Sammon, D., Hartgerink, J.D. et al. Chain alignment of collagen I deciphered using computationally designed heterotrimers. Nat Chem Biol 16, 423–429 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing