Engineering yeast phospholipid metabolism for de novo oleoylethanolamide production

Abstract

Phospholipids, the most abundant membrane lipid components, are crucial in maintaining membrane structures and homeostasis for biofunctions. As a structurally diverse and tightly regulated system involved in multiple organelles, phospholipid metabolism is complicated to manipulate. Thus, repurposing phospholipids for lipid-derived chemical production remains unexplored. Herein, we develop a Saccharomyces cerevisiae platform for de novo production of oleoylethanolamide, a phospholipid derivative with promising pharmacological applications in ameliorating lipid dysfunction and neurobehavioral symptoms. Through deregulation of phospholipid metabolism, screening of biosynthetic enzymes, engineering of subcellular trafficking and process optimization, we could produce oleoylethanolamide at a titer of 8,115.7 µg l−1 and a yield on glucose of 405.8 µg g−1. Our work provides a proof-of-concept study for systemically repurposing phospholipid metabolism for conversion towards value-added biological chemicals, and this multi-faceted framework may shed light on tailoring phospholipid metabolism in other microbial hosts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Engineering a phospholipid platform for de novo biosynthesis of NAEs in yeast.
Fig. 2: Phospholipid production by engineered S. cerevisiae strains.
Fig. 3: Enzyme screening towards improving biosynthesis of OEA.
Fig. 4: Unlocking bottlenecks of the OEA biosynthetic pathway in yeast.
Fig. 5: Combinatorial optimization to increase the production of OEA.

Data availability

The materials and data reported in this study are available upon reasonable request from the corresponding author.

References

  1. 1.

    Keppel Hesselink, J. M., de Boer, T. & Witkamp, R. F. Palmitoylethanolamide: a natural body-own anti-inflammatory agent, effective and safe against influenza and common cold. Int. J. Inflam. 2013, 151028 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Petrosino, S., Iuvone, T. & Di Marzo, V. N-palmitoyl-ethanolamine: biochemistry and new therapeutic opportunities. Biochimie 92, 724–727 (2010).

    CAS  PubMed  Google Scholar 

  3. 3.

    Tsuboi, K., Uyama, T., Okamoto, Y. & Ueda, N. Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm. Regen. 38, 28 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Fagundo, A. B. et al. Modulation of the endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) on executive functions in humans. PloS One 8, e66387 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Donvito, G. et al. The endogenous cannabinoid system: a budding source of targets for treating inflammatory and neuropathic pain. Neuropsychopharmacology 43, 52–79 (2018).

    CAS  PubMed  Google Scholar 

  6. 6.

    Fu, J. et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425, 90–93 (2003).

    CAS  PubMed  Google Scholar 

  7. 7.

    Campolongo, P. et al. Fat-induced satiety factor oleoylethanolamide enhances memory consolidation. Proc. Natl Acad. Sci. USA 106, 8027–8031 (2009).

    CAS  PubMed  Google Scholar 

  8. 8.

    Folick, A. et al. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347, 83–86 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Jin, P., Yu, H. L., Tian, L., Zhang, F. & Quan, Z. S. Antidepressant-like effects of oleoylethanolamide in a mouse model of chronic unpredictable mild stress. Pharmacol. Biochem. Behav. 133, 146–154 (2015).

    CAS  PubMed  Google Scholar 

  10. 10.

    Bieberich, E. It’s a lipid’s world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem. Res. 37, 1208–1229 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Payahoo, L., Khajebishak, Y., Asghari Jafarabadi, M. & Ostadrahimi, A. Oleoylethanolamide supplementation reduces inflammation and oxidative stress in obese people: a clinical trial. Adv. Pharm. Bull. 8, 479–487 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Tufvesson, P., Annerling, A., Hatti-Kaul, R. & Adlercreutz, D. Solvent-free enzymatic synthesis of fatty alkanolamides. Biotechnol. Bioeng. 97, 447–453 (2007).

    CAS  PubMed  Google Scholar 

  13. 13.

    Wang, X., Wang, X. & Wang, T. Synthesis of oleoylethanolamide using lipase. J. Agric. Food Chem. 60, 451–457 (2012).

    CAS  PubMed  Google Scholar 

  14. 14.

    Liu, Q., Yu, T., Campbell, K., Nielsen, J. & Chen, Y. Modular pathway rewiring of yeast for amino acid production. Methods Enzymol. 608, 417–439 (2018).

    PubMed  Google Scholar 

  15. 15.

    Faure, L. et al. Discovery and characterization of an Arabidopsis thaliana N-acylphosphatidylethanolamine synthase. J. Biol. Chem. 284, 18734–18741 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Bowen, K. J. et al. Oleic acid-derived oleoylethanolamide: a nutritional science perspective. Prog. Lipid Res. 67, 1–15 (2017).

    CAS  PubMed  Google Scholar 

  17. 17.

    Klug, L. & Daum, G. Yeast lipid metabolism at a glance. FEMS Yeast Res. 14, 369–388 (2014).

    CAS  PubMed  Google Scholar 

  18. 18.

    Kaneko, H., Hosohara, M., Tanaka, M. & Itoh, T. Lipid composition of 30 species of yeast. Lipids 11, 837–844 (1976).

    CAS  PubMed  Google Scholar 

  19. 19.

    Zinser, E. et al. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J. Bacteriol. 173, 2026–2034 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Horvath, S. E., Wagner, A., Steyrer, E. & Daum, G. Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1811, 1030–1037 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zhou, Y. J. et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7, 11709 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Muccioli, G. G., Sia, A., Muchowski, P. J. & Stella, N. Genetic manipulation of palmitoylethanolamide production and inactivation in Saccharomyces cerevisiae. PloS One 4, e5942 (2009).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Han, G. S., Wu, W. I. & Carman, G. M. The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J. Biol. Chem. 281, 9210–9218 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Fakas, S. et al. Phosphatidate phosphatase activity plays key role in protection against fatty acid-induced toxicity in yeast. J. Biol. Chem. 286, 29074–29085 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Han, G. S. & Carman, G. M. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis. J. Biol. Chem. 292, 13230–13242 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Henry, S. A., Kohlwein, S. D. & Carman, G. M. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190, 317–349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Adeyo, O. et al. The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J. Cell. Biol. 192, 1043–1055 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ueda, N., Tsuboi, K. & Uyama, T. Enzymological studies on the biosynthesis of N-acylethanolamines. Biochim. Biophys. Acta 1801, 1274–1285 (2010).

    CAS  PubMed  Google Scholar 

  29. 29.

    Partow, S., Siewers, V., Bjørn, S., Nielsen, J. & Maury, J. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27, 955–964 (2010).

    CAS  PubMed  Google Scholar 

  30. 30.

    Carman, G. M. & Han, G. S. Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu. Rev. Biochem. 80, 859–883 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Nebauer, R., Schuiki, I., Kulterer, B., Trajanoski, Z. & Daum, G. The phosphatidylethanolamine level of yeast mitochondria is affected by the mitochondrial components Oxa1p and Yme1p. FEBS J. 274, 6180–6190 (2007).

    CAS  PubMed  Google Scholar 

  32. 32.

    Horvath, S. E. et al. Processing and topology of the yeast mitochondrial phosphatidylserine decarboxylase 1. J. Biol. Chem. 287, 36744–36755 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Frey, P. A. The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. 10, 461–470 (1996).

    CAS  PubMed  Google Scholar 

  34. 34.

    Keren, L. et al. Promoters maintain their relative activity levels under different growth conditions. Mol. Syst. Biol. 9, 701 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Xie, W., Lv, X., Ye, L., Zhou, P. & Yu, H. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab. Eng. 30, 69–78 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Carman, G. M. Discoveries of the phosphatidate phosphatase genes in yeast. J. Biol. Chem. 294, 1681–1689 (2019).

    CAS  PubMed  Google Scholar 

  37. 37.

    Xu, P., Li, L., Zhang, F., Stephanopoulos, G. & Koffas, M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc. Natl Acad. Sci. USA 111, 11299–11304 (2014).

    CAS  PubMed  Google Scholar 

  38. 38.

    Dahl, R. H. et al. Engineering dynamic pathway regulation using stress-response promoters. Nat. Biotechnol. 31, 1039–1046 (2013).

    CAS  PubMed  Google Scholar 

  39. 39.

    Lands, W. E. Stories about acyl chains. Biochim. Biophys. Acta 1483, 1–14 (2000).

    CAS  PubMed  Google Scholar 

  40. 40.

    Westfall, P. J. et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl Acad. Sci. USA 109, E111–E118 (2012).

    CAS  PubMed  Google Scholar 

  41. 41.

    Yu, T. et al. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat. Commun. 8, 15587 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Wilding, M. et al. Reverse engineering: transaminase biocatalyst development using ancestral sequence reconstruction. Green Chem. 19, 5375–5380 (2017).

    CAS  Google Scholar 

  43. 43.

    Gumulya, Y. et al. Engineering highly functional thermostable proteins using ancestral sequence reconstruction. Nat. Catal. 1, 878–888 (2018).

    CAS  Google Scholar 

  44. 44.

    Hu, Y., Zhu, Z., Nielsen, J. & Siewers, V. Heterologous transporter expression for improved fatty alcohol secretion in yeast. Metab. Eng. 45, 51–58 (2018).

    CAS  PubMed  Google Scholar 

  45. 45.

    Xu, P., Qiao, K., Ahn, W. S. & Stephanopoulos, G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc. Natl Acad. Sci. USA 113, 10848–10853 (2016).

    CAS  PubMed  Google Scholar 

  46. 46.

    Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P. & Stephanopoulos, G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol. 35, 173–177 (2017).

    CAS  PubMed  Google Scholar 

  47. 47.

    Park, Y. K., Nicaud, J. M. & Ledesma-Amaro, R. The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications. Trends Biotechnol. 36, 304–317 (2018).

    CAS  PubMed  Google Scholar 

  48. 48.

    Verduyn, C., Postma, E., Scheffers, W. A. & Van Dijken, J. P. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501–517 (1992).

    CAS  PubMed  Google Scholar 

  49. 49.

    Akada, R. et al. PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 23, 399–405 (2006).

    CAS  PubMed  Google Scholar 

  50. 50.

    Khoomrung, S. et al. Rapid quantification of yeast lipid using microwave-assisted total lipid extraction and HPLC-CAD. Anal. Chem. 85, 4912–4919 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the helpful discussion with Y. Zhou, Z. Zhu, X. Li, T. Yu, P. Teixeira and G. Liu. We thank L. Fang-I Chao, K. Campbell and Z. Zhu for help with final polishing of the manuscript, and J. Kindbom from Chalmers Mass Spectrometry Infrastructure for his help with GC–MS analysis. We acknowledge A. Pielach and M. Micaroni from the Centre for Cellular Imaging at the University of Gothenburg and the National Microscopy Infrastructure (VR-RFI 2016-00968) for providing assistance in microscopy. We acknowledge funding from the Swedish Foundation for Strategic Research (grant no. RBP14-0013, to J.N.), the Knut and Alice Wallenberg Foundation (project no. 2015-0279, to J.N.) and the Novo Nordisk Foundation (grant no. NNF10CC1016517, to J.N.).

Author information

Affiliations

Authors

Contributions

Y.L., A.K. and J.N. conceived the study. Y.L. designed the experiments, executed experiments and did the data analysis. Q.L assisted with genetic constructs. S.K. assisted with GC–MS analysis. Y.L., Q.L., A.K. and J.N. wrote the manuscript. All authors discussed the results and made comments on the manuscript.

Corresponding author

Correspondence to Jens Nielsen.

Ethics declarations

Competing interests

J.N. and A.K. are shareholders in Biopetrolia AB.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Tables 1–7.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Q., Krivoruchko, A. et al. Engineering yeast phospholipid metabolism for de novo oleoylethanolamide production. Nat Chem Biol 16, 197–205 (2020). https://doi.org/10.1038/s41589-019-0431-2

Download citation

Further reading