Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of transcription–translation coordination tune bacterial indole signaling

Abstract

Indole signaling is an important cross-species communication pathway in the mammalian gut. In bacteria, upon induction by tryptophan, the molecular sensor (tnaC) controls indole biosynthesis by precisely coordinating dynamics of the corresponding macromolecular machineries during its transcription and translation. Our understanding of this regulatory program is still limited owing to its rapid dynamic nature. To address this shortcoming, we adopted a massively parallel profiling method to quantify the responses of 1,450 synthetic tnaC variants in the presence of three concentrations of tryptophan in living bacterial cells. The resultant dataset enabled us to comprehensively probe the key intermediate states of macromolecular machineries during the transcription and translation of tnaC. We also used modeling to provide a systems-level understanding of how these critical states collectively shape the output of this regulatory program quantitatively. A similar methodology will likely apply to other poorly understood dynamics-dependent cis-regulatory elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FACS–seq produces a high-quality dataset.
Fig. 2: Overview of residues regulating ligand induction and the basal response of the tnaC sensor.
Fig. 3: RNAP–ribosome synchronization during transcription–translation of tnaC.
Fig. 4: Key intermediate states during transcription–translation of tnaC and dynamic modeling of macromolecule coordination.
Fig. 5: Dynamic modeling provides insight about the molecular mechanism of tnaC.
Fig. 6: The two subsections of tnaC are functionally independent and face divergent selection pressures.

Similar content being viewed by others

Data availability

NGS raw data from FACS–seq have been deposited in the NCBI Sequence Read Archive under BioProject PRJNA503322. Any other data or materials related to this work are available from the corresponding author upon request.

Code availability

The Python script used to process raw FACS–seq data and perform reliability test simulation can be accessed at https://github.com/wtmbiohacker/FACS_NGS.git. The custom Python script used to perform the modeling of macromolecular coordination during the tnaC sensor response can be accessed at https://github.com/wtmbiohacker/tnaC_kinetics_modeling. We also provide a comprehensive user guide to enable reuse of this code.

References

  1. Ronen, M., Rosenberg, R., Shraiman, B. I. & Alon, U. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl Acad. Sci. USA 99, 10555–10560 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zong, Y. et al. Insulated transcriptional elements enable precise design of genetic circuits. Nat. Commun. 8, 52 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Widom, J. R. et al. Ligand modulates cross-coupling between riboswitch folding and transcriptional pausing. Mol. Cell 72, 541–552 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    CAS  PubMed  Google Scholar 

  5. Serganov, A. & Patel, D. J. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8, 776–790 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gong, F. & Yanofsky, C. Instruction of translating ribosome by nascent peptide. Science 297, 1864–1867 (2002).

    CAS  PubMed  Google Scholar 

  7. Seidelt, B. et al. Structural Insight into nascent polypeptide chain-mediated translational stalling. Science 326, 1412–1415 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vazquez-Laslop, N., Thum, C. & Mankin, A. S. Molecular mechanism of drug-dependent ribosome stalling. Mol. Cell 30, 190–202 (2008).

    CAS  PubMed  Google Scholar 

  9. Calvo, S. E., Pagliarini, D. J. & Mootha, V. K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl Acad. Sci. USA 106, 7507–7512 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rolland, F., Moore, B., Sheen, J. & Smeekens, S. Sugar sensing and signaling in plants. Plant Cell 14, S185–S205 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tran, M. K., Schultz, C. J. & Baumann, U. Conserved upstream open reading frames in higher plants. BMC Genomics 9, 361 (2008).

    PubMed  PubMed Central  Google Scholar 

  12. Vega, N. M., Allison, K. R., Khalil, A. S. & Collins, J. J. Signaling-mediated bacterial persister formation. Nat. Chem. Biol. 8, 431–433 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dar, D. et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352, aad9822 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. Tsai, A., Kornberg, G., Johansson, M., Chen, J. & Puglisi, J. D. The dynamics of SecM-induced translational stalling. Cell Rep. 7, 1521–1533 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11, 801–807 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Romero, P. A., Tran, T. M. & Abate, A. R. Dissecting enzyme function with microfluidic-based deep mutational scanning. Proc. Natl Acad. Sci. USA 112, 7159–7164 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Reynolds, Ka, McLaughlin, R. N. & Ranganathan, R. Hot spots for allosteric regulation on protein surfaces. Cell 147, 1564–1575 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McLaughlin, R. N. Jr, Poelwijk, F. J., Raman, A., Gosal, W. S. & Ranganathan, R. The spatial architecture of protein function and adaptation. Nature 491, 138–142 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Adams, R. M., Kinney, J. B., Mora, T. & Walczak, A. M. Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves. Elife 5, e23156 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Whitehead, T. A. et al. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat. Biotechnol. 30, 543–548 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stewart, V. & Yanofsky, C. Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12. J. Bacteriol. 164, 731–740 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Lee, H. H., Molla, M. N., Cantor, C. R. & Collins, J. J. Bacterial charity work leads to population-wide resistance. Nature 467, 82–85 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gong, F., Ito, K., Nakamura, Y. & Yanofsky, C. The mechanism of tryptophan induction of tryptophanase operon expression: tryptophan inhibits release factor-mediated cleavage of TnaC–peptidyl-tRNAPro. Proc. Natl Acad. Sci. USA 98, 8997–9001 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cruz-Vera, L. R., Rajagopal, S., Squires, C. & Yanofsky, C. Features of ribosome–peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression. Mol. Cell 19, 333–343 (2005).

    CAS  PubMed  Google Scholar 

  26. Townshend, B., Kennedy, A. B., Xiang, J. S. & Smolke, C. D. High-throughput cellular RNA device engineering. Nat. Methods 12, 989–994 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Binder, S. et al. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 13, R40 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fang, M. et al. Intermediate-sensor assisted push–pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metab. Eng. 33, 41–51 (2016).

    CAS  PubMed  Google Scholar 

  29. Cruz-Vera, L. R. & Yanofsky, C. Conserved residues Asp16 and Pro24 of TnaC–tRNAPro participate in tryptophan induction of tna operon expression. J. Bacteriol. 190, 4791–4797 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stewart, V. & Yanofsky, C. Role of leader peptide synthesis in tryptophanase operon expression in Escherichia coli K-12. J. Bacteriol. 167, 383–386 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Martinez, A. K. et al. Interactions of the TnaC nascent peptide with rRNA in the exit tunnel enable the ribosome to respond to free tryptophan. Nucleic Acids Res. 42, 1245–1256 (2014).

    CAS  PubMed  Google Scholar 

  33. Seip, B., Sacheau, G., Dupuy, D. & Innis, C. A. Ribosomal stalling landscapes revealed by high-throughput inverse toeprinting of mRNA libraries. Life Sci. Alliance 1, e201800148 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Melnikov, S. et al. Molecular insights into protein synthesis with proline residues. EMBO Rep. 17, 1776–1784 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Proshkin, S., Rahmouni, R., Mironov, A. & Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328, 504–508 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaham, G. & Tuller, T. Genome scale analysis of Escherichia coli with a comprehensive prokaryotic sequence-based biophysical model of translation initiation and elongation. DNA Res. 25, 195–205 (2018).

    CAS  PubMed  Google Scholar 

  37. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Artsimovitch, I. & Landick, R. Interaction of a nascent RNA structure with RNA polymerase is required for hairpin-dependent transcriptional pausing but not for transcript release. Genes Dev. 12, 3110–3122 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gong, F. & Yanofsky, C. A transcriptional pause synchronizes translation with transcription in the tryptophanase operon leader region. J. Bacteriol. 185, 6472–6476 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bonde, M. T. et al. Predictable tuning of protein expression in bacteria. Nat. Methods 13, 233–236 (2016).

    CAS  PubMed  Google Scholar 

  41. Bischoff, L., Berninghausen, O. & Beckmann, R. Molecular basis for the ribosome functioning as an l-tryptophan sensor. Cell Rep. 9, 469–475 (2014).

    CAS  PubMed  Google Scholar 

  42. Seip, B. & Innis, C. A. How widespread is metabolite sensing by ribosome-arresting nascent peptides? J. Mol. Biol. 428, 2217–2227 (2016).

    CAS  PubMed  Google Scholar 

  43. Zhang, H. et al. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36, 894–898 (2018).

    CAS  PubMed  Google Scholar 

  44. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  45. Chu, D. Limited by sensing—a minimal stochastic model of the lag-phase during diauxic growth. J. Theor. Biol. 414, 137–146 (2017).

    PubMed  Google Scholar 

  46. Lycus, P et al. A bet-hedging strategy for denitrifying bacteria curtails their release of N2O. Proc. Natl Acad. Sci. USA 115, 11820–11825 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, J. et al. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl. Microbiol. Biotechnol. 93, 2455–2462 (2012).

    CAS  PubMed  Google Scholar 

  49. Gohl, D. M et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016).

    CAS  PubMed  Google Scholar 

  50. Monk, J. M. et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc. Natl Acad. Sci. USA 110, 20338–20343 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Pan for support in FACS experiment. We thank C. Guan and H. Feng from the C. Zhang and H. Xing laboratories for their assistance in treatment of raw NGS data and phylogenetic analysis. We also would like to thank J. Zhang for critical discussion about the dynamic process, Q. Hu for critical discussion of structural biology and J. Liu for comments on the manuscript. This work was supported by the National Natural Science Foundation of China (NSFC21676156, to C.Z.), Tsinghua University Initiative Scientific Research Program (20161080108, to C.Z.), the National Natural Science Foundation of China (NSFC21627812, to X.-H.X.), a postdoctoral innovation support plan from the China Postdoctoral Science Foundation (to T.W.) and a postdoctoral fellowship from the Tsinghua–Peking Joint Center for Life Sciences (to T.W.).

Author information

Authors and Affiliations

Authors

Contributions

T.W. conceived the project and contributed to all computational analysis, validation experiments, data analysis, model design and preparation of the manuscript. X.Z. conceived the project, performed FACS–seq, validation experiments and data analysis, and helped write the manuscript. H.J. helped in performing validation experiments. T.L.W. helped in analysis of the TnaC–nascent peptide structure. C.Z. conceived and supervised the project, and edited the manuscript. X.-H.X. supervised the project.

Corresponding authors

Correspondence to Tianmin Wang or Chong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–9, Supplementary Figs. 1–29, Supplementary Note

Reporting Summary

Supplementary Dataset 1

The result of FACS-seq about the response of each sensor variant (mean value, u)

Supplementary Dataset 2

The result of FACS-seq about the response of each sensor variant (noise, σ)

Supplementary Dataset 3

The nucleotide sequences of the 1,450 synthetic tnaC variants used in this work

Supplementary Dataset 4

The nucleotide sequences of all collected tnaC genes from gut bacteria

Supplementary Dataset 5

The mRNA folding energy values of tnaC variants with mutations covering codon 2~9 (n = 444)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zheng, X., Ji, H. et al. Dynamics of transcription–translation coordination tune bacterial indole signaling. Nat Chem Biol 16, 440–449 (2020). https://doi.org/10.1038/s41589-019-0430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0430-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing