Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric mechanism for site-specific ubiquitination of FANCD2

Abstract

DNA-damage repair is implemented by proteins that are coordinated by specialized molecular signals. One such signal in the Fanconi anemia (FA) pathway for the repair of DNA interstrand crosslinks is the site-specific monoubiquitination of FANCD2 and FANCI. The signal is mediated by a multiprotein FA core complex (FA-CC) however, the mechanics for precise ubiquitination remain elusive. We show that FANCL, the RING-bearing module in FA-CC, allosterically activates its cognate ubiqutin-conjugating enzyme E2 UBE2T to drive site-specific FANCD2 ubiquitination. Unlike typical RING E3 ligases, FANCL catalyzes ubiquitination by rewiring the intraresidue network of UBE2T to influence the active site. Consequently, a basic triad unique to UBE2T engages a structured acidic patch near the target lysine on FANCD2. This three-dimensional complementarity, between the E2 active site and substrate surface, induced by FANCL is central to site-specific monoubiquitination in the FA pathway. Furthermore, the allosteric network of UBE2T can be engineered to enhance FANCL-catalyzed FANCD2–FANCI di-monoubiquitination without compromising site specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FANCL-driven site-specific FANCD2 monoubiquitination does not require the core Ubiquitin fold.
Fig. 2: FANCL-induced changes in UBE2T contribute to FANCD2 monoubiquitination.
Fig. 3: The basic triad of the UBE2T active site and the target acidic patch on FANCD2 enable site-specific ubiquitination.
Fig. 4: A specialized residue pair within the E2-fold regulates RING-E3-driven substrate ubiquitination.
Fig. 5: UBE2Tv3 enhances E3-dependent and E3-independent FANCD2 monoubiquitination.
Fig. 6: Monoubiquitination of FANCD2 regulates efficiency of FANCI monoubiquitination.

Similar content being viewed by others

Data availability

The atomic coordinates and structure factors have been deposited in the PDB under accession code 6R75. Other data and materials are available from the corresponding authors upon reasonable request or from the MRC Protein Phosphorylation and Ubiquitylation Unit reagents web page (http://mrcppureagents.dundee.ac.uk/).

References

  1. Pickart, C. M. Mechanisms underlying ubiquitination. Annu Rev. Biochem 70, 503–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Buetow, L. & Huang, D. T. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 17, 626–642 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stewart, M. D., Ritterhoff, T., Klevit, R. E. & Brzovic, P. S. E2 enzymes: more than just middle men. Cell Res. 26, 423–440 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Al-Hakim, A. et al. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair 9, 1229–1240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garaycoechea, J. I. & Patel, K. J. Why does the bone marrow fail in Fanconi anemia? Blood 123, 26–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Sims, A. E. et al. FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 14, 564–567 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sareen, A., Chaudhury, I., Adams, N. & Sobeck, A. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase. Nucleic Acids Res. 40, 8425–8439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Joo, W. et al. Structure of the FANCI–FANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 333, 312–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Machida, Y. J. et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23, 589–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Walden, H. & Deans, A. J. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annu. Rev. Biophys. 43, 257–278 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Alpi, A. F., Chaugule, V. & Walden, H. Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochem. J. 473, 3401–3419 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Meetei, A. R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat. Genet. 35, 165–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Cole, A. R., Lewis, L. P. & Walden, H. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Nat. Struct. Mol. Biol. 17, 294–298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hodson, C. et al. Structural analysis of human FANCL, the E3 ligase in the Fanconi anemia pathway. J. Biol. Chem. 286, 32628–32637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hodson, C., Purkiss, A., Miles, J. A. & Walden, H. Structure of the human FANCL RING–Ube2T complex reveals determinants of cognate E3–E2 selection. Structure 22, 337–344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alpi, A. F., Pace, P. E., Babu, M. M. & Patel, K. J. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32, 767–777 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Longerich, S. et al. Regulation of FANCD2 and FANCI monoubiquitination by their interaction and by DNA. Nucleic Acids Res. 42, 5657–5670 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sato, K., Toda, K., Ishiai, M., Takata, M. & Kurumizaka, H. DNA robustly stimulates FANCD2 monoubiquitylation in the complex with FANCI. Nucleic Acids Res. 40, 4553–4561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rajendra, E. et al. The genetic and biochemical basis of FANCD2 monoubiquitination. Mol. Cell 54, 858–869 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Twest, S. et al. Mechanism of ubiquitination and deubiquitination in the Fanconi anemia pathway. Mol. Cell 65, 247–259 (2017).

    Article  PubMed  CAS  Google Scholar 

  23. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Swuec, P. et al. The FA core complex contains a homo-dimeric catalytic module for the symmetric mono-ubiquitination of FANCI–FANCD2. Cell Rep. 18, 611–623 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Sugahara, R., Mon, H., Lee, J. M. & Kusakabe, T. Monoubiquitination-dependent chromatin loading of FancD2 in silkworms, a species lacking the FA core complex. Gene 501, 180–187 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, X. Y. et al. Xpf and not the Fanconi anaemia proteins or Rev3 accounts for the extreme resistance to cisplatin in Dictyostelium discoideum. PLoS Genet. 5, e1000645 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Plechanovova, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H. & Hay, R. T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, B. et al. Inhibiting the protein ubiquitination cascade by ubiquitin-mimicking short peptides. Org. Lett. 14, 5760–5763 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sheng, Y. et al. A human ubiquitin conjugating enzyme (E2)–HECT E3 ligase structure–function screen. Mol. Cell Proteom. 11, 329–341 (2012).

    Article  CAS  Google Scholar 

  30. Huang, Y. et al. Modularized functions of the Fanconi anemia core complex. Cell Rep. 7, 1849–1857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Castella, M. et al. FANCI regulates recruitment of the FA core complex at sites of DNA damage independently of FANCD2. PLoS Genet. 11, e1005563 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Olsen, S. K. & Lima, C. D. Structure of a ubiquitin E1–E2 complex: insights to E1–E2 thioester transfer. Mol. Cell 49, 884–896 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ulrich, H. D. & Walden, H. Ubiquitin signalling in DNA replication and repair. Nat. Rev. Mol. Cell Biol. 11, 479–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Hibbert, R. G., Huang, A., Boelens, R. & Sixma, T. K. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proc. Natl Acad. Sci. USA 108, 5590–5595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheung, R. S. et al. Ubiquitination-linked phosphorylation of the FANCI S/TQ cluster contributes to activation of the Fanconi anemia I/D2 complex. Cell Rep. 19, 2432–2440 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ishiai, M. et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 15, 1138–1146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ceccaldi, R., Sarangi, P. & D’Andrea, A. D. The Fanconi anaemia pathway: new players and new functions. Nat. Rev. Mol. Cell Biol. 17, 337–349 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Gallego, L. D. et al. Structural mechanism for the recognition and ubiquitination of a single nucleosome residue by Rad6–Bre1. Proc. Natl Acad. Sci. USA 113, 10553–10558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mattiroli, F., Uckelmann, M., Sahtoe, D. D., van Dijk, W. J. & Sixma, T. K. The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A. Nat. Commun. 5, 3291 (2014).

    Article  PubMed  CAS  Google Scholar 

  40. McGinty, R. K., Henrici, R. C. & Tan, S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514, 591–596 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Streich, F. C. Jr. & Lima, C. D. Capturing a substrate in an activated RING E3/E2–SUMO complex. Nature 536, 304–308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eddins, M. J., Carlile, C. M., Gomez, K. M., Pickart, C. M. & Wolberger, C. Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 13, 915–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Middleton, A. J. & Day, C. L. The molecular basis of lysine 48 ubiquitin chain synthesis by Ube2K. Sci. Rep. 5, 16793 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Petroski, M. D. & Deshaies, R. J. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF–Cdc34. Cell 123, 1107–1120 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Wickliffe, K. E., Lorenz, S., Wemmer, D. E., Kuriyan, J. & Rape, M. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144, 769–781 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, W. et al. Dimeric Ube2g2 simultaneously engages donor and acceptor ubiquitins to form Lys48-linked ubiquitin chains. EMBO J. 33, 46–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morreale, F. E. et al. Allosteric targeting of the Fanconi anemia ubiquitin-conjugating enzyme Ube2T by fragment screening. J. Med Chem. 60, 4093–4098 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hewitt, W. M. et al. Insights into the allosteric inhibition of the SUMO E2 enzyme Ubc9. Angew. Chem. Int. Ed. Engl. 55, 5703–5707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chaugule, V. K., Arkinson, C., Toth, R. & Walden, H. Enzymatic preparation of monoubiquitinated FANCD2 and FANCI proteins. Methods Enzymol. 618, 73–104 (2019).

    Article  PubMed  CAS  Google Scholar 

  50. Arkinson, C., Chaugule, V. K., Toth, R. & Walden, H. Specificity for deubiquitination of monoubiquitinated FANCD2 is driven by the N-terminus of USP1. Life Sci. Alliance 1, e201800162 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Piovesan, D., Minervini, G. & Tosatto, S. C. The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res. 44, W367–W374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Doncheva, N. T., Klein, K., Domingues, F. S. & Albrecht, M. Analyzing and visualizing residue networks of protein structures. Trends Biochem. Sci. 36, 179–182 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  57. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  Google Scholar 

  59. Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank past and current members of the Walden laboratory for experimental suggestions, comments on the manuscript and their support. The pLou3 Rat RNF4 RING–RING DNA construct was a gift from R.T. Hay (University of Dundee). The X. laevis FANCD2 and FANCI coding genes were gifts from J.C. Walter (Harvard Medical School). The human PCNA cDNA template was a gift from S. Petersen-Mahrt (IFOM-FIRC Institute of Molecular Oncology). All constructs are available from the MRC Protein Phosphorylation and Ubiquitylation Unit reagents web page (http://mrcppureagents.dundee.ac.uk/) or upon reasonable request from the corresponding authors. We thank S. A. A. Rehman for assistance during protein crystal harvest. Diffraction experiments were performed on beamline ID30A-1/MASSIF-1 at the European Synchrotron RADiation Facility (ESRF, Grenoble) and we are grateful to M. Bowler for providing assistance in using the beamline. We thank B. Smith for access to computing resources for molecular dynamics simulations. We thank J. Southall and S. M. Kelly for assistance with the MST experiments. This work was supported by the Medical Research Council (grant number MC_UU_12016/12), the EMBO Young Investigator Programme (to H.W.) and the European Research Council (ERC-2015-CoG-681582 ICLUb consolidator grant to H.W.).

Author information

Authors and Affiliations

Authors

Contributions

V.K.C. and H.W. conceived, designed and supervised the research; R.T. and V.K.C. generated various expression vectors and and performed mutagenesis; C.A. and V.K.C. established protein purification methodology and generated all recombinant material; V.K.C. conducted biochemical and biophysical assays, cell biology experiments, residue network analyses and protein crystallization; M.L.R. executed structure determination and validation; O.K. performed molecular dynamic simulations; and V.K.C. and H.W. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Viduth K. Chaugule or Helen Walden.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Supplementary Figs. 1–11

Reporting Summary

Supplementary Dataset 1

Unique edges in unbound and E3-bound UBE2T residue networks.

Supplementary Dataset 2

Unique edges in unbound and E3-bound UBE2B residue networks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaugule, V.K., Arkinson, C., Rennie, M.L. et al. Allosteric mechanism for site-specific ubiquitination of FANCD2. Nat Chem Biol 16, 291–301 (2020). https://doi.org/10.1038/s41589-019-0426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0426-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing