Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resilient living materials built by printing bacterial spores

Abstract

Materials can be made multifunctional by embedding them with living cells that perform sensing, synthesis, energy production, and physical movement. A challenge is that the conditions needed for living cells are not conducive to materials processing and require continuous water and nutrients. Here, we present a three dimensional (3D) printer that can mix material and cell streams to build 3D objects. Bacillus subtilis spores were printed within the material and germinated on its exterior surface, including spontaneously in new cracks. The material was resilient to extreme stresses, including desiccation, solvents, osmolarity, pH, ultraviolet light, and γ-radiation. Genetic engineering enabled the bacteria to respond to stimuli or produce chemicals on demand. As a demonstration, we printed custom-shaped hydrogels containing bacteria that can sense or kill Staphylococcus aureus, a causative agent of infections. This work demonstrates materials endued with living functions that can be used in applications that require storage or exposure to environmental stresses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 3D printer design and development of the bioink components.
Fig. 2: 3D printing of living materials.
Fig. 3: Cutting the object induces germination of spores.
Fig. 4: Induction of genome-encoded sensors in the printed material.
Fig. 5: Resilience of living materials printed with B. subtilis spores.
Fig. 6: Printing a wound-shaped hydrogel containing bacteria that respond to S. aureus.

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available from the corresponding author on request. Plasmids and Bacilli strains are available from Addgene and BGSC, respectively.

Code availability

All of the Arduino scripts are available privately from GitHub after requesting permission from the authors using the following link: https://github.com/linagonzalez87/3D-printer-Cell-Line.git.

References

  1. Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, 1704847 (2018).

    Article  CAS  Google Scholar 

  2. Chen, A. Y., Zhong, C. & Lu, T. K. Engineering living functional materials. ACS Synth. Biol. 4, 8–11 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Balasubramanian, S., Aubin-Tam, M.-E. & Meyer, A. S. 3D printing for the fabrication of biofilm-based functional living materials. ACS Synth. Biol. 8, 1564–1567 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mao, A. S. & Mooney, D. J. Regenerative medicine: current therapies and future directions. Proc. Natl Acad. Sci. USA 112, 14452–14459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Gerber, L. C., Koehler, F. M., Grass, R. N. & Stark, W. J. Incorporating microorganisms into polymer layers provides bioinspired functional living materials. Proc. Natl Acad. Sci. USA 109, 90–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Ball, P. Synthetic biology—engineering nature to make materials. MRS Bull. 43, 477–484 (2018).

    Article  Google Scholar 

  9. Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. & Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36, 230–235 (2010).

    Article  Google Scholar 

  10. Chen, X., Mahadevan, L., Driks, A. & Sahin, O. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat. Nanotechnol. 9, 137–141 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, C. et al. Engineered Bacillus subtilis biofilms as living glues. Mater. Today 28, 40–48 (2019).

    Article  Google Scholar 

  12. Haneef, M. et al. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7, 41292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, W. et al. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci. Adv. 3, e1601984 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao, Y. et al. Programmable assembly of pressure sensors using pattern-forming bacteria. Nat. Biotechnol. 35, 1087 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Charrier, M. et al. Engineering the S-Layer of Caulobacter crescentus as a foundation for stable, high-density, 2D living materials. ACS Synth. Biol. 8, 181–190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q. & Hui, D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B-Eng. 143, 172–196 (2018).

    Article  CAS  Google Scholar 

  18. Keating, S. J. et al. 3D printed multimaterial microfluidic valve. PLoS One 11, e0160624 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Schmieden, D. T. et al. Printing of patterned, engineered E. coli biofilms with a low-cost 3D printer. ACS Synth. Biol. 7, 1328–1337 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Connell, J. L., Ritschdorff, E. T., Whiteley, M. & Shear, J. B. 3D printing of microscopic bacterial communities. Proc. Natl Acad. Sci. USA 110, 18380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, X. et al. 3D Printing of living responsive materials and devices. Adv. Mater. 30, 1704821 (2017).

    Article  CAS  Google Scholar 

  22. Lehner, B. A. E., Schmieden, D. T. & Meyer, A. S. A straightforward approach for 3D bacterial printing. ACS Synth. Biol. 6, 1124–1130 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schaffner, M., Rühs, P. A., Coulter, F., Kilcher, S. & Studart, A. R. 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Huang, J. et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol. 15, 34–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. McKenney, P. T., Driks, A. & Eichenberger, P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 11, 33 (2012).

    Article  PubMed  CAS  Google Scholar 

  26. Setlow, P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101, 514–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Moeller, R. et al. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J. Bacteriol. 190, 1134 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Setlow, B., Atluri, S., Kitchel, R., Koziol-Dube, K. & Setlow, P. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective α/β-type small acid-soluble proteins. J. Bacteriol. 188, 3740–3747 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sahin, O., Yong, E. H., Driks, A. & Mahadevan, L. Physical basis for the adaptive flexibility of Bacillus spore coats. J. R. Soc. Interface 9, 3156–3160 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cano, R. J. & Borucki, M. K. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268, 1060 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Ulrich, N. et al. Experimental studies addressing the longevity of Bacillus subtilis spores–the first data from a 500-year experiment. PLoS One 13, e0208425 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cutting, S. M., Hong, H. A., Baccigalupi, L. & Ricca, E. Oral vaccine delivery by recombinant spore probiotics. Int. Rev. Immunol. 28, 487–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Yung, P. T. & Ponce, A. Fast sterility assessment by germinable-endospore biodosimetry. Appl. Environ. Microbiol. 74, 7669–7674 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. N. Turner, B., Strong, R. & A. Gold, S. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 20, 192–204 (2014).

    Article  Google Scholar 

  35. Bose, B. & Grossman, A. D. Regulation of horizontal gene transfer in Bacillus subtilis by activation of a conserved site-specific protease. J. Bacteriol. 193, 22 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M. & Fujita, Y. Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res. 28, 1206–1210 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. & Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harrell, C. R., Djonov, V., Fellabaum, C. & Volarevic, V. Risks of using sterilization by gamma radiation: the other side of the coin. Int. J. Med. Sci. 15, 274–279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 4, 18033 (2018).

    Article  PubMed  Google Scholar 

  40. Awadhiya, A., Tyeb, S., Rathore, K. & Verma, V. Agarose bioplastic-based drug delivery system for surgical and wound dressings. Eng. Life Sci. 17, 204–214 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Jensen, R. O., Winzer, K., Clarke, S. R., Chan, W. C. & Williams, P. Differential recognition of Staphylococcus aureus quorum-sensing signals depends on both extracellular loops 1 and 2 of the transmembrane sensor AgrC. J. Mol. Biol. 381, 300–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Johnson, C. T. et al. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing.Proc. Natl Acad. Sci. USA 115, E4960–E4969 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wieland Brown, L. C., Acker, M. G., Clardy, J., Walsh, C. T. & Fischbach, M. A. Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proc. Natl Acad. Sci. USA 106, 2549 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Acker, M. G., Bowers, A. A. & Walsh, C. T. Generation of thiocillin variants by prepeptide gene replacement and in vivo processing by Bacillus cereus. J. Am. Chem. Soc. 131, 17563–17565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cámara, M., Hardman, A., Williams, P. & Milton, D. Quorum sensing in Vibrio cholerae. Nat. Genet. 32, 217–218 (2002).

    Article  PubMed  Google Scholar 

  46. Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2, a012427 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8, 15028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thoendel, M., Kavanaugh, J. S., Flack, C. E. & Horswill, A. R. Peptide signaling in the Staphylococci. Chem. Rev. 111, 117–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Koenig, R. L., Ray, J. L., Maleki, S. J., Smeltzer, M. S. & Hurlburt, B. K. Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J. Bacteriol. 186, 7549 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kokai-Kun, J. F., Walsh, S. M., Chanturiya, T. & Mond, J. J. Lysostaphin cream eradicates Staphylococcus aureus nasal colonization in a cotton rat model. Antimicrob. Agents Chemother. 47, 1589–1597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bayer, T. S. & Samson, J. A. Bacterial methods. US patent 9023635B2 (2015).

  52. Hwang, I. Y. et al. Engineering microbes for targeted strikes against human pathogens. Cell. Mol. Life Sci. 75, 2719–2733 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.M.G. and C.A.V. were supported by the Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through grant number N00014-16-1-2509. This research was also funded by the Institute for Collaborative Biotechnologies through contract number W911NF-09-0001 with the U.S. Army Research Office. We also thank the Koch Institute Swanson Biotechnology Center for technical support, notably the Nanotechnology Materials Core Center. We thank Christopher Walsh at Harvard Medical School for providing the thiocillin-producing cells.

Author information

Authors and Affiliations

Authors

Contributions

L.M.G designed and built the printer and performed the materials and genetic engineering experiments. N.M. built the AIP and lysostaphin strains and aided in the construction and analysis of those materials. C.A.V. and L.M.G. conceived of the project, analyzed the data, and wrote the manuscript.

Corresponding author

Correspondence to Christopher A. Voigt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–8, Supplementary Figs. 1–45, Supplementary Notes 1–2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, L.M., Mukhitov, N. & Voigt, C.A. Resilient living materials built by printing bacterial spores. Nat Chem Biol 16, 126–133 (2020). https://doi.org/10.1038/s41589-019-0412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0412-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research