Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex

An Author Correction to this article was published on 15 January 2020

This article has been updated

Abstract

The anticancer agent indisulam inhibits cell proliferation by causing degradation of RBM39, an essential mRNA splicing factor. Indisulam promotes an interaction between RBM39 and the DCAF15 E3 ligase substrate receptor, leading to RBM39 ubiquitination and proteasome-mediated degradation. To delineate the precise mechanism by which indisulam mediates the DCAF15–RBM39 interaction, we solved the DCAF15–DDB1–DDA1–indisulam–RBM39(RRM2) complex structure to a resolution of 2.3 Å. DCAF15 has a distinct topology that embraces the RBM39(RRM2) domain largely via non-polar interactions, and indisulam binds between DCAF15 and RBM39(RRM2), coordinating additional interactions between the two proteins. Studies with RBM39 point mutants and indisulam analogs validated the structural model and defined the RBM39 α-helical degron motif. The degron is found only in RBM23 and RBM39, and only these proteins were detectably downregulated in indisulam-treated HCT116 cells. This work further explains how indisulam induces RBM39 degradation and defines the challenge of harnessing DCAF15 to degrade additional targets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Functional validation of RBM39 and DCAF15–DDB1–DDA1 complexes.
Fig. 2: Structural analysis of the human DCAF15–DDB1–DDA1–RBM39(RRM2) complex with indisulam.
Fig. 3: DDA1 stabilizes the DCAF15–DDB1 complex and impacts degradation of RBM39 by indisulam.
Fig. 4: Detailed description of indisulam binding at the DCAF15 and RBM39 interface.
Fig. 5: Proteome-wide motif search predicts indisulam selectivity confirmed by expression proteomics.

Data availability

The authors declare that the data supporting the findings of this study are available within the publication and its Supplementary Information or have been deposited in the PDB or Electron Microscopy Data Bank (http://www.ebi.ac.uk/pdbe/emdb/), as appropriate. Further information is available upon request. The PDB accession code for the human DCAF15–DDB1–DDA1–RBM39(RRM2)–indisulam EM co-structure is 6SJ7 and the EMDB accession code is EMD-10213. The PDB accession codes for the X-ray co-strutures of human DCAF15–DDB1(ΔBPB)–DDA1–RBM39(RRM2)–indisulam and human DCAF15–DDB1(ΔBPB)–DDA1–RBM39(RRM2)–compound 9 are 6UD7 and 6UE5, respectively.

Change history

  • 15 January 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Bondeson, D. P. & Crew, C. M. Targeted protein degradation by small molecules. Annu. Rev. Pharmacol. Toxicol. 57, 107–123 (2017).

    CAS  PubMed  Google Scholar 

  2. 2.

    Collins, I., Wang, H., Caldwell, J. J. & Chopra, R. Chemical approaches to targeted protein degradation through modulation of the ubiquitin–proteasome pathway. Biochem. J. 474, 1127–1147 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ciechanover, A. Intracellular protein degradation: from a vague Idea, through the lysosome and the ubiquitin–proteasome system, and onto human diseases and drug targeting (Nobel Lecture). Angew. Chem. Int. Ed. 44, 5944–5967 (2005).

    CAS  Google Scholar 

  4. 4.

    Thrower, J. S. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Yu, H. & Matouschek, A. Recognition of client proteins by the proteasome. Annu. Rev. Biophys. 46, 149–173 (2017).

    CAS  PubMed  Google Scholar 

  6. 6.

    Finley, D., Chen, X. & Walters, K. J. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem. Sci. 41, 77–93 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Neutzner, M. & Neutzner, A. Enzymes of ubiquitination and deubiquitination. Essays Biochem. 52, 37–50 (2012).

    CAS  PubMed  Google Scholar 

  8. 8.

    Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Clague, M. J., Heride, C. & Urbé, S. The demographics of the ubiquitin system. Trends Cell Biol. 25, 417–426 (2015).

    CAS  PubMed  Google Scholar 

  10. 10.

    Wu, Y. L. et al. Structural basis for an unexpected mode of SERM-Mediated ER antagonism. Mol. Cell 18, 413–424 (2005).

    CAS  PubMed  Google Scholar 

  11. 11.

    Patel, H. K. & Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Therapeutics 186, 1–24 (2018).

    CAS  Google Scholar 

  12. 12.

    Winkler, J. D., Neklesa, T. K. & Crews, C. M. Targeted protein degradation by PROTACs. Pharmacol. Ther. 174, 138–144 (2017).

    PubMed  Google Scholar 

  13. 13.

    Larrieu, A. & Vernoux, T. Comparison of plant hormone signalling systems. Essays Biochem. 58, 165–181 (2015).

    PubMed  Google Scholar 

  14. 14.

    Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    CAS  PubMed  Google Scholar 

  15. 15.

    Chamberlain, P. P. & Cathers, B. E. Cereblon modulators: low molecular weight inducers of protein degradation. Drug Discov. Today Technol. 31, 29–34 (2019).

    PubMed  Google Scholar 

  16. 16.

    Owa, T. et al. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. 42, 3789–3799 (1999).

    CAS  PubMed  Google Scholar 

  17. 17.

    Ozawa, Y. et al. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur. J. Cancer 37, 2275–2282 (2001).

    CAS  PubMed  Google Scholar 

  18. 18.

    Uehara, T. et al. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13, 675–680 (2017).

    CAS  PubMed  Google Scholar 

  19. 19.

    Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    PubMed  Google Scholar 

  20. 20.

    Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S. & Thornton, J. M. PDBsum: structural summaries of PDB entries. Protein Sci. 27, 129–134 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Dias, J. et al. Structural analysis of the KANSL1/WDR5/KANSL2 complex reveals that WDR5 is required for efficient assembly and chromatin targeting of the NSL complex. Genes Dev. 28, 929–942 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005).

    CAS  PubMed  Google Scholar 

  24. 24.

    Song, J. J. & Kingston, R. E. WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J. Biol. Chem. 283, 35258–35264 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Qu, Q. et al. Structure and conformational dynamics of a COMPASS histone H3K4 methyltransferase complex. Cell 174, 1117–1126 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Jain, B. P. & Pandey, S. WD40 repeat proteins: signalling scaffold with diverse functions. Protein J. 37, 391–406 (2018).

    CAS  PubMed  Google Scholar 

  27. 27.

    Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K. & Uversky, V. N. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta 1804, 996–1010 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Wu, Y. et al. The DDB1–DCAF1–Vpr–UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction. Nat. Struct. Mol. Biol. 23, 933–940 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Scrima, A. et al. Structural basis of UV DNA-damage recognition by the DDB1–DDB2 complex. Cell 135, 1213–1223 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Fischer, E. S. et al. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Shabek, N. et al. Structural insights into DDA1 function as a core component of the CRL4–DDB1 ubiquitin ligase. Cell Discov. 4, 67 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Chambers, J. C., Kenan, D., Martin, B. J. & Keene, J. D. Genomic structure and amino acid sequence domains of the human La autoantigen. J. Biol. Chem. 263, 18043–18051 (1988).

    CAS  PubMed  Google Scholar 

  33. 33.

    Dreyfuss, G., Swanson, M. S. & Piñol-Roma, S. Heterogeneous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends Biochem. Sci. 13, 86–91 (1988).

    CAS  PubMed  Google Scholar 

  34. 34.

    Murray, J. M. & Bussiere, D. E. Targeting the purinome. Methods Mol. Biol. 575, 47–92 (2009).

    CAS  PubMed  Google Scholar 

  35. 35.

    Molecular Operating Environment (MOE) 2018.01 (Chemical Computing Group ULC, Montreal, QC, Canada, 2018).

  36. 36.

    Milletti, F., Storchi, L., Sforna, G. & Cruciani, G. New and original pKa prediction method using grid molecular interaction fields. J. Chem. Inf. Model. 47, 2172–2181 (2007).

    CAS  PubMed  Google Scholar 

  37. 37.

    Kazlauskas, R. Engineering more stable proteins. Chem. Soc. Rev. 47, 9026–9045 (2018).

    CAS  PubMed  Google Scholar 

  38. 38.

    Pick, E. et al. Mammalian DET1 regulates CUL4A activity and forms stable complexes with E2 ubiquitin-conjugating enzymes. Mol. Cell. Biol. 27, 4708–4719 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Olma, M. H. et al. An interaction network of the mammalian COP9 signalosome identifies Dda1 as a core subunit of multiple Cul4-based E3 ligases. J. Cell Sci. 122, 1035–1044 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Petzold, G., Fischer, E. S. & Thomä, N. H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4 CRBN ubiquitin ligase. Nature 532, 127–130 (2016).

    CAS  PubMed  Google Scholar 

  42. 42.

    Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4 CRBN ubiquitin ligase. Nature 535, 252–257 (2016).

    CAS  PubMed  Google Scholar 

  43. 43.

    Laue, T. M., Shah, B. D., Ridgeway, T. M. & Pelletier, S. L. In Analytical Ultracentrifugation in Biochemistry and Polymer Science (Eds. Harding S. E. et al.) 90–125 (Royal Society of Chemistry, 1992).

  44. 44.

    Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Mayer, M. & Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 123, 6108–6117 (2001).

    CAS  PubMed  Google Scholar 

  46. 46.

    Bhunia, A., Bhattacharjya, S. & Chatterjee, S. Applications of saturation transfer difference NMR in biological systems. Drug Discov. Today 17, 505–513 (2012).

    CAS  PubMed  Google Scholar 

  47. 47.

    Combe, C. W., Fischer, L. & Rappsilber, J. xiNET: cross-link network maps with residue resolution. Mol. Cell. Proteom. 14, 1137–1147 (2015).

    CAS  Google Scholar 

  48. 48.

    Winter, G. Xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    CAS  Google Scholar 

  49. 49.

    Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. Sect. D Struct. Biol. 74, 85–97 (2018).

    CAS  Google Scholar 

  50. 50.

    Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. Sect. D Biol. Crystallogr. 69, 1204–1214 (2013).

    CAS  Google Scholar 

  51. 51.

    Adams, P. D.et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr.213–221 (2010).

  52. 52.

    Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 2210–2221 (2004).

    CAS  Google Scholar 

  53. 53.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  Google Scholar 

  54. 54.

    Grant, T., Rohou, A. & Grigorieff, N. CisTEM, user-friendly software for single-particle image processing. Elife 7, e35383 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  Google Scholar 

  57. 57.

    Allen, R. I., Box, K. J., Comer, J. E. A., Peake, C. & Tam, K. Y. Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. J. Pharm. Biomed. Anal. 17, 699–712 (1998).

    CAS  PubMed  Google Scholar 

  58. 58.

    Erb, M. A. et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nature 543, 270–274 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Wessel, D. & Flügge, U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143 (1984).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Renatus (Novartis) for providing DCAF15 constructs and M. Li (Novartis) for providing DDB1 and DDB1(ΔBPB) constructs. We also thank G. Pardee for baculovirus generation and protein expression, S. Widger for additional expression support, X. Ma for helpful discussions on ligase structural biology, S. Skolnik for supporting pKa measurements, and T. Rejtar for help with proteomics data informatics. We would like to thank T. Terwilliger and R. Read for the helpful discussions in regards to crystallographic molecular replacement and phasing. Finally, we thank J. Bradner, J. Shulok, R. Jain, J. Porter and J. Tallarico for helpful discussions, input on this manuscript and supporting this work.

Author information

Affiliations

Authors

Contributions

R.B., A. Fazal, J.Z., B.O., S.J. and P.-Y.M. designed and/or synthesized reported compounds. N.C., P.G. and H.V. performed crosslinking and mass spectrometry studies. A.B., D.K. and A.G performed SPR experiments. D.K. performed analytical ultracentrifugation. V.H. and R.G.K. performed proteome-wide motif searches and structural and computational modeling. C.B., H.S. and C.W. collected and processed cryo-EM data. F.X. and J.C. conducted expression proteomics experiments. A.O.F. and A. Frommlet performed biological NMR experiments. W.S. performed crystallographic screening and crystal optimization; D.E.B. designed protein constructs, collected X-ray crystallography datasets, reduced data, determined initial crystal structures and refined final structures; M.K. refined the final structures. L.X. purified DCAF15 complexes and RBM39 variants, and performed ITC and DSF experiments. J.P. and A.B. purified RBM39 variants, performed fluorescence-polarization and TR-FRET assays, cellular viability assays, siRNA knockdown and immunoblots. All authors contributed to writing. D.E.B., J.M.S., and J.P wrote and edited the final manuscript. D.E.B., J.M.S., L.X., and J.P contributed intellectual and strategic input.

Corresponding authors

Correspondence to Dirksen E. Bussiere or Jonathan M. Solomon or Joshiawa Paulk.

Ethics declarations

Competing interests

All authors are employees of Novartis, or were at the time of this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Tables 1 and 2 and Supplementary Figs. 1–16

Reporting Summary

Supplementary Dataset 1

Supplementary Note

Synthetic Procedures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bussiere, D.E., Xie, L., Srinivas, H. et al. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat Chem Biol 16, 15–23 (2020). https://doi.org/10.1038/s41589-019-0411-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing