Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of an antivirulence compound that reverses β-lactam resistance in MRSA

Abstract

Staphylococcus aureus is the leading cause of infections worldwide, and methicillin-resistant strains (MRSA) are emerging. New strategies are urgently needed to overcome this threat. Using a cell-based screen of ~45,000 diverse synthetic compounds, we discovered a potent bioactive, MAC-545496, that reverses β-lactam resistance in the community-acquired MRSA USA300 strain. MAC-545496 could also serve as an antivirulence agent alone; it attenuates MRSA virulence in Galleria mellonella larvae. MAC-545496 inhibits biofilm formation and abrogates intracellular survival in macrophages. Mechanistic characterization revealed MAC-545496 to be a nanomolar inhibitor of GraR, a regulator that responds to cell-envelope stress and is an important virulence factor and determinant of antibiotic resistance. The small molecule discovered herein is an inhibitor of GraR function. MAC-545496 has value as a research tool to probe the GraXRS regulatory system and as an antibacterial lead series of a mechanism to combat drug-resistant Staphylococcal infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-throughput screening identifies potent bioactives that reverse β-lactam resistance in MRSA.
Fig. 2: MAC-545496 targets GraR, a regulator of the cell-envelope stress response.
Fig. 3: MAC-545496 inhibits S. aureus USA300 biofilm formation.
Fig. 4: MAC-545496 abrogates intracellular survival of S. aureus USA300.
Fig. 5: MAC-545496 attenuates virulence in vivo.
Fig. 6: MAC-545496 potentiates components of the innate immune response (oxidative stress and lysozyme).

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its Supplementary Information files). Source data for Figs. 1–6 are presented with the paper.

References

  1. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections Including Tuberculosis (World Health Organization, 2017).

  2. Boucher, H. W. et al. Bad bugs, no drugs: no ESKAPE! an update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12 (2009).

    Article  PubMed  Google Scholar 

  3. Nannini, E., Murray, B. E. & Arias, C. A. Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr. Opin. Pharmacol. 10, 516–521 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Lowy, F. D. Staphylococcus aureus infections. New Engl. J. Med. 339, 520–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Wright, G. D. & Sutherland, A. D. New strategies for combating multidrug-resistant bacteria. Trends Mol. Med. 13, 260–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Maura, D., Ballok, A. E. & Rahme, L. G. Considerations and caveats in anti-virulence drug development. Curr. Opin. Microbiol. 33, 41–46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, K., Campbell, J., Swoboda, J. G., Cuny, G. D. & Walker, S. Development of improved inhibitors of wall teichoic acid biosynthesis with potent activity against Staphylococcus aureus. Bioorg. Med. Chem. Lett. 20, 1767–1770 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sewell, E. W. & Brown, E. D. Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics. J. Antibiot. 67, 43–51 (2014).

    Article  CAS  Google Scholar 

  9. D’Elia, M. A., Henderson, J. A., Beveridge, T. J., Heinrichs, D. E. & Brown, E. D. The N-acetylmannosamine transferase catalyzes the first committed step of teichoic acid assembly in Bacillus subtilis and Staphylococcus aureus. J. Bacteriol. 191, 4030–4034 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. D’Elia, M. A., Millar, K. E., Beveridge, T. J. & Brown, E. D. Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J. Bacteriol. 188, 8313–8316 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. D’Elia, M. A. et al. Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J. Bacteriol. 188, 4183–4189 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lee, S. H. et al. TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Sci. Transl. Med. 8, 329ra332 (2016).

    Article  CAS  Google Scholar 

  13. Czarny, T. L. & Brown, E. D. A small-molecule screening platform for the discovery of inhibitors of undecaprenyl diphosphate synthase. ACS Infect. Dis. 2, 489–499 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Farha, M. A. et al. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase. Proc. Natl Acad. Sci. USA 112, 11048–11053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Santa Maria, J. P. Jr. et al. Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids. Proc. Natl Acad. Sci. USA 111, 12510–12515 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Falord, M., Karimova, G., Hiron, A. & Msadek, T. GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 56, 1047–1058 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Falord, M., Mader, U., Hiron, A., Debarbouille, M. & Msadek, T. Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS One 6, e21323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, S. J. et al. The Staphylococcus aureus two-component regulatory system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infect. Immun. 80, 74–81 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kraus, D. et al. The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol. 8, 85 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Li, M. et al. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol. Microbiol. 66, 1136–1147 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Flannagan, R. S., Kuiack, R. C., McGavin, M. J. & Heinrichs, D. E. Staphylococcus aureus uses the GraXRS regulatory system to sense and adapt to the acidified phagolysosome in macrophages. MBio 9, e01143-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mannala, G. K. et al. Whole-genome comparison of high and low virulent Staphylococcus aureus isolates inducing implant-associated bone infections. Int J. Med. Microbiol. 308, 505–513 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Shanks, R. M. et al. Genetic evidence for an alternative citrate-dependent biofilm formation pathway in Staphylococcus aureus that is dependent on fibronectin binding proteins and the GraRS two-component regulatory system. Infect. Immun. 76, 2469–2477 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Campbell, J. et al. An antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall stress stimulon in Staphylococcus aureus. Antimicrob. Agents Chemother. 56, 1810–1820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Strauss, L. et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc. Natl Acad. Sci. USA 114, E10596–E10604 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Performance Standards for Antimicrobial Susceptibility Testing 27th Edition, CLSI Supplement M100 (Clinical and Laboratory Standards Institute, 2017).

  27. Fey, P. D. et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 4, e00537-12 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Fridman, M. et al. Two unique phosphorylation-driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cell-wall charge: Stk1/Stp1 meets GraSR. Biochemistry 52, 7975–7986 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Vestergaard, M. et al. Inhibition of the ATP synthase eliminates the intrinsic resistance of Staphylococcus aureus towards polymyxins. MBio 8, e01114-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rajagopal, M et al. Multidrug intrinsic resistance factors in Staphylococcus aureus identified by profiling fitness within high-diversity transposon libraries. MBio 7, e00950-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vestergaard, M. et al. Genome-wide identification of antimicrobial intrinsic resistance determinants in Staphylococcus aureus. Front. Microbiol. 7, 2018 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Martinez-Hackert, E. & Stock, A. M. Structural relationships in the OmpR family of winged-helix transcription factors. J. Mol. Biol. 269, 301–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Kaiser, J. C. et al. Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide. PLoS Genet. 14, e1007159 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Li, M. et al. Gram-positive three-component antimicrobial peptide-sensing system. Proc. Natl Acad. Sci. USA 104, 9469–9474 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mandin, P. et al. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol. Microbiol 57, 1367–1380 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Becker, K., Heilmann, C. & Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 27, 870–926 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. del Pozo, J. L. & Patel, R. The challenge of treating biofilm-associated bacterial infections. Clin. Pharm. Ther. 82, 204–209 (2007).

    Article  CAS  Google Scholar 

  38. Shanks, R. M., Sargent, J. L., Martinez, R. M., Graber, M. L. & O’Toole, G. A. Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol. Dial. Transpl. 21, 2247–2255 (2006).

    Article  CAS  Google Scholar 

  39. Lehar, S. M. et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527, 323–328 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Coady, A. et al. The Staphylococcus aureus ABC-type manganese transporter MntABC is critical for reinitiation of bacterial replication following exposure to phagocytic oxidative burst. PLoS One 10, e0138350 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bera, A., Herbert, S., Jakob, A., Vollmer, W. & Gotz, F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol. Microbiol 55, 778–787 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Cheung, A. L. et al. Site-specific mutation of the sensor kinase GraS in Staphylococcus aureus alters the adaptive response to distinct cationic antimicrobial peptides. Infect. Immun. 82, 5336–5345 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, F. et al. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat. Chem. Biol. 12, 174–179 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Gao, P., Davies, J. & Kao, R. Y. T. Dehydrosqualene desaturase as a novel target for anti-virulence therapy against Staphylococcus aureus. MBio 8, e01224-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nielsen, A. et al. Solonamide B inhibits quorum sensing and reduces Staphylococcus aureus mediated killing of human neutrophils. PLoS One 9, e84992 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang, L. et al. The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase a inhibition. Front Microbiol 6, 1031 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Li, W. et al. Analysis of the Staphylococcus aureus capsule biosynthesis pathway in vitro: characterization of the UDP–GlcNAc C6 dehydratases CapD and CapE and identification of enzyme inhibitors. Int. J. Med. Microbiol. 304, 958–969 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Ejim, L. et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat. Chem. Biol. 7, 348–350 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. El-Halfawy, O. M. & Brown, E. D. High-throughput screening for inhibitors of wall teichoic acid biosynthesis in Staphylococcus aureus. in Bacterial Polysaccharides: Methods in Molecular Biology vol. 1954 (ed. Brockhausen, I.) 297–308 (Humana Press, 2019).

  50. Zlitni, S., Blanchard, J. E. & Brown, E. D. High-throughput screening of model bacteria. Methods Mol. Biol. 486, 13–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically Approved Standard Ninth Edition CLSI Document M07-A9 (Clinical and Laboratory Standards Institute, 2012).

  52. Bae, T. & Schneewind, O. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55, 58–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Charpentier, E. et al. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl. Environ. Microbiol. 70, 6076–6085 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grosser, M. R. & Richardson, A. R. Method for preparation and electroporation of S. aureus and S. epidermidis. Methods Mol. Biol. 1373, 51–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Whitmore, L. & Wallace, B. A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668–W673 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Merritt, J. H., Kadouri, D. E. & O’Toole, G. A. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. Chapter 1, Unit 1B.1 (2005).

    PubMed  Google Scholar 

  57. Harding, C. R., Schroeder, G. N., Collins, J. W. & Frankel, G. Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. J. Vis. Exp. 81, e50964 (2013).

    Google Scholar 

  58. Flannagan, R. S., Heit, B. & Heinrichs, D. E. Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cell Microbiol. 18, 514–535 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Keddie from the University of Alberta for providing valuable advice on breeding Galleria and supplying the first batch of larvae, and B. Weber and A. Khaled for their help in breeding Galleria. We thank G. Wright from McMaster University for providing S. aureus clinical isolates. We also thank S. French for preparing the graphical abstract. This work was supported by grants from the Canadian Institutes of Health Research (foundation grant FRN-143215), the Canadian glycomics network (GlycoNet, https://doi.org/10.13039/501100009056, a National Centre of Excellence) and a Tier I Canada Research Chair award to E.D.B. D.E.H. acknowledges operating grant support from Cystic Fibrosis Canada. Studies performed in the laboratory of M.G.O. were funded by the Ontario Research Foundation. O.M.E.-H. was supported by a Michael G. DeGroote Fellowship Award in Basic Biomedical Science.

Author information

Authors and Affiliations

Authors

Contributions

O.M.E.-H., T.L.C. and E.D.B. conceived and designed the research. O.M.E.-H. performed all experiments and analyzed all data unless otherwise stated. T.L.C. performed the primary screen. R.S.F. performed the macrophage intracellular assays, supervised by D.E.H. R.C.K. constructed promoter–reporter transcriptional fusions, supervised by M.J.M. J.D., A.S. and P.E. synthesized and characterized MAC-545496 analogs, supervised by M.G.O. J.C.B. helped O.M.E.-H. perform and analyze the ITC assays and performed the circular dichroism assays, supervised by R.M.E. O.M.E.-H and E.D.B. wrote the paper. All authors approved the final version.

Corresponding author

Correspondence to Eric D. Brown.

Ethics declarations

Competing interests

E.D.B., O.M.E.-H., T.L.C., J.D., M.G.O., R.S.F. and D.E.H. are inventors on a patent application on the use of MAC-545496 and analogs thereof, alone and in combination with other antibiotics, for the treatment of MRSA infections.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Supplementary Tables 1–4 and Supplementary Methods.

Reporting Summary

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Halfawy, O.M., Czarny, T.L., Flannagan, R.S. et al. Discovery of an antivirulence compound that reverses β-lactam resistance in MRSA. Nat Chem Biol 16, 143–149 (2020). https://doi.org/10.1038/s41589-019-0401-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0401-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research