Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ABHD10 is an S-depalmitoylase affecting redox homeostasis through peroxiredoxin-5

Abstract

S-Palmitoylation is a reversible lipid post-translational modification that has been observed on mitochondrial proteins, but both the regulation and functional consequences of mitochondrial S-palmitoylation are poorly understood. Here, we show that perturbing the ‘erasers’ of S-palmitoylation, acyl protein thioesterases (APTs), with either pan-active inhibitors or a mitochondrial-targeted APT inhibitor, diminishes the antioxidant buffering capacity of mitochondria. Surprisingly, this effect was not mediated by the only known mitochondrial APT, but rather by a resident mitochondrial protein with no known endogenous function, ABHD10. We show that ABHD10 is a member of the APT family of regulatory proteins and identify peroxiredoxin-5 (PRDX5), a key antioxidant protein, as a target of ABHD10 S-depalmitoylase activity. We then find that ABHD10 regulates the S-palmitoylation status of the nucleophilic active site residue of PRDX5, providing a direct mechanistic connection between ABHD10-mediated S-depalmitoylation of PRDX5 and its antioxidant capacity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Connections between S-depalmitoylation and mitochondrial redox buffering capacity.
Fig. 2: Selective inhibition of mitochondrial APTs reduces mitochondrial redox buffering capacity.
Fig. 3: ABHD10 regulates mitochondrial redox buffering capacity.
Fig. 4: Biochemical and structural characterization of ABHD10.
Fig. 5: ABHD10 modulates mitochondrial redox buffering capacity by regulating S-palmitoylation of PRDX5 active site.
Fig. 6: Schematic of PRDX5 regulation by ABHD10-mediated S-depalmitoylation.

Similar content being viewed by others

Data availability

All structural data have been deposited in the Protein Data Bank (PDB: 6NY9). Additional data supporting the findings of this manuscript are available from the corresponding author upon reasonable request.

References

  1. Blanc, M. et al. SwissPalm: protein palmitoylation database. F1000Res. 4, 261 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Lanyon-Hogg, T., Faronato, M., Serwa, R. A. & Tate, E. W. Dynamic protein acylation: new substrates, mechanisms, and drug targets. Trends Biochem. Sci. 42, 566–581 (2017).

    CAS  PubMed  Google Scholar 

  3. Martin, B. R., Wang, C., Adibekian, A., Tully, S. E. & Cravatt, B. F. Global profiling of dynamic protein palmitoylation. Nat. Methods 9, 84–89 (2011).

    PubMed  PubMed Central  Google Scholar 

  4. Dekker, F. J. et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat. Chem. Biol. 6, 449–456 (2010).

    CAS  PubMed  Google Scholar 

  5. Brownlee, C. & Heald, R. Importin α partitioning to the plasma membrane regulates intracellular scaling. Cell 176, 805–815.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan, P. et al. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol. 12, 282–289 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, S. et al. Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature 549, 399–403 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ko, P. J. & Dixon, S. J. Protein palmitoylation and cancer. EMBO Rep. 19, e46666 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Zareba-Koziol, M., Figiel, I., Bartkowiak-Kaczmarek, A. & Wlodarczyk, J. Insights into protein S-palmitoylation in synaptic plasticity and neurological disorders: potential and limitations of methods for detection and analysis. Front. Mol. Neurosci. 11, 175 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Sobocinska, J., Roszczenko-Jasinska, P., Ciesielska, A. & Kwiatkowska, K. Protein palmitoylation and its role in bacterial and viral infections. Front. Immunol. 8, 2003 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Gottlieb, C. D. & Linder, M. E. Structure and function of DHHC protein S-acyltransferases. Biochem. Soc. Trans. 45, 923–928 (2017).

    CAS  PubMed  Google Scholar 

  12. Duncan, J. A. & Gilman, A. G. A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein α subunits and p21RAS. J. Biol. Chem. 273, 15830–15837 (1998).

    CAS  PubMed  Google Scholar 

  13. Lin, D. T. & Conibear, E. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. eLife 4, e11306 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Long, J. Z. & Cravatt, B. F. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev. 111, 6022–6063 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yokoi, N. et al. Identification of PSD-95 depalmitoylating enzymes. J. Neurosci. 36, 6431–6444 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kostiuk, M. A. et al. Identification of palmitoylated mitochondrial proteins using a bio-orthogonal azido-palmitate analogue. FASEB J. 22, 721–732 (2008).

    CAS  PubMed  Google Scholar 

  17. Tang, M., Lu, L., Huang, Z. & Chen, L. Palmitoylation signaling: a novel mechanism of mitochondria dynamics and diverse pathologies. Acta Biochim. Biophys. Sin. (Shanghai) 50, 831–833 (2018).

    CAS  Google Scholar 

  18. Maynard, T. M. et al. Mitochondrial localization and function of a subset of 22q11 deletion syndrome candidate genes. Mol. Cell Neurosci. 39, 439–451 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen, L. F. et al. Role of S-palmitoylation by ZDHHC13 in mitochondrial function and metabolism in liver. Sci. Rep. 7, 2182 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Kathayat, R. S. et al. Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nat. Commun. 9, 334 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Kathayat, R. S. & Dickinson, B. C. Measuring S-depalmitoylation activity in vitro and in live cells with fluorescent probes. Methods Mol. Biol. 2009, 99–109 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Knoops, B., Goemaere, J., Van der Eecken, V. & Declercq, J. P. Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid. Redox Signal. 15, 817–829 (2011).

    CAS  PubMed  Google Scholar 

  23. Frohlich, M., Dejanovic, B., Kashkar, H., Schwarz, G. & Nussberger, S. S-palmitoylation represents a novel mechanism regulating the mitochondrial targeting of BAX and initiation of apoptosis. Cell Death Dis. 5, e1057 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Thinon, E., Fernandez, J. P., Molina, H. & Hang, H. C. Selective enrichment and direct analysis of protein S-palmitoylation sites. J. Proteome Res. 17, 1907–1922 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dickinson, B. C. & Chang, C. J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. 130, 9638–9639 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rhee, S. G. & Kil, I. S. Multiple functions and regulation of mammalian peroxiredoxins. Annu. Rev. Biochem. 86, 749–775 (2017).

    CAS  PubMed  Google Scholar 

  28. Wan, J., Roth, A. F., Bailey, A. O. & Davis, N. G. Palmitoylated proteins: purification and identification. Nat. Protoc. 2, 1573–1584 (2007).

    CAS  PubMed  Google Scholar 

  29. Martin, B. R. & Cravatt, B. F. Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6, 135–138 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kathayat, R. S., Elvira, P. D. & Dickinson, B. C. A fluorescent probe for cysteine depalmitoylation reveals dynamic APT signaling. Nat. Chem. Biol. 13, 150–152 (2017).

    CAS  PubMed  Google Scholar 

  31. Zielonka, J. et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 117, 10043–10120 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiu, T., Kathayat, R. S., Cao, Y., Beck, M. W. & Dickinson, B. C. A fluorescent probe with improved water solubility permits the analysis of protein S-depalmitoylation activity in live cells. Biochemistry 57, 221–225 (2018).

    CAS  PubMed  Google Scholar 

  33. Adibekian, A. et al. Confirming target engagement for reversible inhibitors in vivo by kinetically tuned activity-based probes. J. Am. Chem. Soc. 134, 10345–10348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Won, S. J. et al. Molecular mechanism for isoform-selective inhibition of acyl protein thioesterases 1 and 2 (APT1 and APT2). ACS Chem. Biol. 11, 3374–3382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ito, Y., Fukami, T., Yokoi, T. & Nakajima, M. An orphan esterase ABHD10 modulates probenecid acyl glucuronidation in human liver. Drug Metab. Dispos. 42, 2109–2116 (2014).

    PubMed  Google Scholar 

  37. Iwamura, A., Fukami, T., Higuchi, R., Nakajima, M. & Yokoi, T. Human alpha/beta hydrolase domain containing 10 (ABHD10) is responsible enzyme for deglucuronidation of mycophenolic acid acyl-glucuronide in liver. J. Biol. Chem. 287, 9240–9249 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dickinson, B. C., Huynh, C. & Chang, C. J. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J. Am. Chem. Soc. 132, 5906–5915 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Devedjiev, Y., Dauter, Z., Kuznetsov, S. R., Jones, T. L. & Derewenda, Z. S. Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 Å. Structure 8, 1137–1146 (2000).

    CAS  PubMed  Google Scholar 

  40. Castello, P. R., Drechsel, D. A. & Patel, M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J. Biol. Chem. 282, 14186–14193 (2007).

    CAS  PubMed  Google Scholar 

  41. McDonald, C., Muhlbauer, J., Perlmutter, G., Taparra, K. & Phelan, S. A. Peroxiredoxin proteins protect MCF-7 breast cancer cells from doxorubicin-induced toxicity. Int. J. Oncol. 45, 219–226 (2014).

    CAS  PubMed  Google Scholar 

  42. Sugimoto, H., Hayashi, H. & Yamashita, S. Purification, cDNA cloning, and regulation of lysophospholipase from rat liver. J. Biol. Chem. 271, 7705–7711 (1996).

    CAS  PubMed  Google Scholar 

  43. Sadeghi, R. S. et al. Wnt5a signaling induced phosphorylation increases APT1 activity and promotes melanoma metastatic behavior. eLife 7, e34362 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Amara, N., Foe, I. T., Onguka, O., Garland, M. & Bogyo, M. Synthetic fluorogenic peptides reveal dynamic substrate specificity of depalmitoylases. Cell Chem. Biol. 26, 35–47.e7 (2019).

    CAS  PubMed  Google Scholar 

  45. Zuhl, A. M. et al. Competitive activity-based protein profiling identifies aza-beta-lactams as a versatile chemotype for serine hydrolase inhibition. J. Am. Chem. Soc. 134, 5068–5071 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Parvez, S., Long, M. J. C., Poganik, J. R. & Aye, Y. Redox signaling by reactive electrophiles and oxidants. Chem. Rev. 118, 8798–8888 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Corvi, M. M., Soltys, C. L. & Berthiaume, L. G. Regulation of mitochondrial carbamoyl-phosphate synthetase 1 activity by active site fatty acylation. J. Biol. Chem. 276, 45704–45712 (2001).

    CAS  PubMed  Google Scholar 

  48. Garland, M. et al. Development of an activity-based probe for acyl-protein thioesterases. PLoS One 13, e0190255 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ogasawara, D. et al. Selective blockade of the lyso-PS lipase ABHD12 stimulates immune responses in vivo. Nat. Chem. Biol. 14, 1099–1108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Peng, J. & Xu, J. RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins 79, 161–171 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kallberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hsu, C. Y. & Uludag, H. A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine. Nat. Protoc. 7, 935–945 (2012).

    CAS  PubMed  Google Scholar 

  57. Buttke, T. M., McCubrey, J. A. & Owen, T. C. Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J. Immunol. Methods 157, 233–240 (1993).

    CAS  PubMed  Google Scholar 

  58. Lin, T. K. et al. Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approach. J. Biol. Chem. 277, 17048–17056 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Chicago, the National Institute of General Medical Sciences of the National Institutes of Health (R35 GM119840, to B.C.D.) and a ‘Catalyst Award’ (to B.C.D.) from the Chicago Biomedical Consortium, with support from the Searle Funds at The Chicago Community Trust. The crystallographic work is based on research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamline, 24-ID-C, which is supported by a grant from the National Institute of General Medical Sciences (P41 GM103403) from the National Institutes of Health. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. We thank the staff of the Advanced Photon Source at Argonne National Laboratory for providing technical advice during data collection, L. Hu (University of Chicago) for providing advice on crystal growth, D. Koirala (University of Chicago) for assistance with X-ray diffraction data collection, Y. Shao (University of Chicago) for advice on structure refinement and S. Ahmadiantehrani (University of Chicago) for assistance proofing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.C.D., Y.C., T.Q. and R.S.K. conceptualized the project. B.C.D., T.Q. and R.S.K. designed mitoFP. T.Q. synthesized mitoFP. Y.C. obtained the ABHD10 crystal structure with data analysis assistance from P.A.R. Y.C., T.Q., R.S.K., S.-A.A., A.K.T. and D.A. performed and analyzed experiments. Y.F. and M.F. provided critical reagents (the mSH library). B.C.D., Y.C., T.Q., R.S.K. and S.-A.A. wrote the manuscript.

Corresponding author

Correspondence to Bryan C. Dickinson.

Ethics declarations

Competing interests

B.C.D. and R.S.K. have a patent (US20180147250A1) on the DPPs.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Supplementary Figures 1–49.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Qiu, T., Kathayat, R.S. et al. ABHD10 is an S-depalmitoylase affecting redox homeostasis through peroxiredoxin-5. Nat Chem Biol 15, 1232–1240 (2019). https://doi.org/10.1038/s41589-019-0399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0399-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing