Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b


Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mapping the interaction surface of the SH3b domain with synthetic S. aureus PG fragments.
Fig. 2: Structure of lysostaphin SH3b in complex with the P4–G5 ligand.
Fig. 3: Binding activity of recombinant SH3b–mNeonGreen proteins to purified S. aureus PG.
Fig. 4: Models for binding of a ligand at two sites.

Data availability

Structural data have been deposited in the PDB with coordinate accession numbers 6RK4 (high-resolution set) and 6RJE (home source set). All other data generated or analyzed during this study are included in this article and its supplementary information or are available from the corresponding authors upon request.


  1. 1.

    Schindler, C. A. & Schuhardt, V. T. Lysostaphin: a new bacteriolytic agent for the Staphylococcus. Proc. Natl Acad. Sci. USA 51, 414–421 (1964).

    CAS  PubMed  Google Scholar 

  2. 2.

    Schindler, C. A. & Schuhardt, V. T. Purification and properties of Lysostaphin—a lytic agent for Staphylococcus aureus. Biochim. Biophys. Acta 97, 242–250 (1965).

    CAS  PubMed  Google Scholar 

  3. 3.

    Thumm, G. & Götz, F. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol. Microbiol 23, 1251–1265 (1997).

    CAS  PubMed  Google Scholar 

  4. 4.

    Wu, J. A., Kusuma, C., Mond, J. J. & Kokai-Kun, J. F. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob. Agents Chemother. 47, 3407–3414 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Climo, M. W., Patron, R. L., Goldstein, B. P. & Archer, G. L. Lysostaphin treatment of experimental methicillin-resistant Staphylococcus aureus aortic valve endocarditis. Antimicrob. Agents Chemother. 42, 1355–1360 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Dajcs, J. J. et al. Lysostaphin treatment of methicillin-resistant Staphylococcus aureus keratitis in the rabbit. Invest Ophthalmol. Vis. Sci. 41, 1432–1437 (2000).

    CAS  PubMed  Google Scholar 

  7. 7.

    Johnson, C. T. et al. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc. Natl Acad. Sci. USA 115, E4960–E4969 (2018).

    CAS  PubMed  Google Scholar 

  8. 8.

    Kiri, N., Archer, G. & Climo, M. W. Combinations of lysostaphin with β-lactams are synergistic against oxacillin-resistant Staphylococcus epidermidis. Antimicrob. Agents Chemother. 46, 2017–2020 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kokai-Kun, J. F., Chanturiya, T. & Mond, J. J. Lysostaphin as a treatment for systemic Staphylococcus aureus infection in a mouse model. J. Antimicrob. Chemother. 60, 1051–1059 (2007).

    CAS  PubMed  Google Scholar 

  10. 10.

    Kokai-Kun, J. F., Walsh, S. M., Chanturiya, T. & Mond, J. J. Lysostaphin cream eradicates Staphylococcus aureus nasal colonization in a cotton rat model. Antimicrob. Agents Chemother. 47, 1589–1597 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Satishkumar, R. et al. Evaluation of the antimicrobial activity of lysostaphin-coated hernia repair meshes. Antimicrob. Agents Chemother. 55, 4379–4385 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Blazanovic, K. et al. Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance. Mol. Ther. Methods Clin. Dev. 2, 15021 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zhao, H. et al. Depletion of T cell epitopes in lysostaphin mitigates anti-drug antibody response and enhances antibacterial efficacy in vivo. Chem. Biol. 22, 629–639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Liu, Y. et al. Immunomimetic designer cells protect mice from MRSA infection. Cell 174, 259–270 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Raz, A., Serrano, A., Thaker, M., Alston, T. & Fischetti, V. A. Lysostaphin lysibody leads to effective opsonization and killing of methicillin-resistant Staphylococcus aureus in a murine model. Antimicrob. Agents Chemother. 62, e01056-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Wall, R. J. et al. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat. Biotechnol. 23, 445–451 (2005).

    CAS  PubMed  Google Scholar 

  17. 17.

    Wittekind, M. & Schuch, R. Cell wall hydrolases and antibiotics: exploiting synergy to create efficacious new antimicrobial treatments. Curr. Opin. Microbiol. 33, 18–24 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Baba, T. & Schneewind, O. Target cell specificity of a bacteriocin molecule: a C-terminal signal directs lysostaphin to the cell wall of Staphylococcus aureus. EMBO J. 15, 4789–4797 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lu, J. Z., Fujiwara, T., Komatsuzawa, H., Sugai, M. & Sakon, J. Cell wall-targeting domain of glycylglycine endopeptidase distinguishes among peptidoglycan cross-bridges. J. Biol. Chem. 281, 549–558 (2006).

    CAS  PubMed  Google Scholar 

  20. 20.

    Mitkowski, P. et al. Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci. Rep. 9, 5965 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Gründling, A. & Schneewind, O. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus. J. Bacteriol. 188, 2463–2472 (2006).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Tamai, E. et al. X-ray structure of a novel endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Mol. Microbiol 92, 326–337 (2014).

    CAS  PubMed  Google Scholar 

  23. 23.

    Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Williamson, M. P How Proteins Work. (Garland Science, 2011). .

  25. 25.

    Zhou, H. X. Quantitative relation between intermolecular and intramolecular binding of pro-rich peptides to SH3 domains. Biophys. J. 91, 3170–3181 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Bolam, D. N. et al. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem. J. 331, 775–781 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gill, J. et al. The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochem. J. 342, 473–480 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Nagy, T. et al. Characterization of a double dockerin from the cellulosome of the anaerobic fungus Piromyces equi. J. Mol. Biol. 373, 612–622 (2007).

    CAS  PubMed  Google Scholar 

  29. 29.

    Raghothama, S. et al. Characterization of a cellulosome dockerin domain from the anaerobic fungus Piromyces equi. Nat. Struct. Biol. 8, 775–778 (2001).

    CAS  PubMed  Google Scholar 

  30. 30.

    Nega, M. et al. Secretome analysis revealed adaptive and non-adaptive responses of the Staphylococcus carnosus femB mutant. Proteomics 15, 1268–1279 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Gally, D. & Archibald, A. R. Cell wall assembly in Staphylococcus aureus: proposed absence of secondary crosslinking reactions. J. Gen. Microbiol 139, 1907–1913 (1993).

    CAS  PubMed  Google Scholar 

  32. 32.

    Gu, J. et al. Structural and biochemical characterization reveals LysGH15 as an unprecedented “EF-hand-like” calcium-binding phage lysin. PLoS Pathog. 10, e1004109 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Meroueh, S. O. et al. Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc. Natl Acad. Sci. USA 103, 4404–4409 (2006).

    CAS  PubMed  Google Scholar 

  34. 34.

    Tossavainen, H. et al. Structural and functional insights into lysostaphin–substrate interaction. Front. Mol. Biosci. 5, 60 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Francius, G., Domenech, O., Mingeot-Leclercq, M. P. & Dufrêne, Y. F. Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J. Bacteriol. 190, 7904–7909 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Jagielska, E., Chojnacka, O. & Sabala, I. LytM fusion with SH3b-like domain expands its activity to physiological conditions. Micro. Drug Resist. 22, 461–469 (2016).

    CAS  Google Scholar 

  37. 37.

    Sabala, I. et al. Crystal structure of the antimicrobial peptidase lysostaphin from Staphylococcus simulans. FEBS J. 281, 4112–4122 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Mesnage, S., Chau, F., Dubost, L. & Arthur, M. Role of N-acetylglucosaminidase and N-acetylmuramidase activities in Enterococcus faecalis peptidoglycan metabolism. J. Biol. Chem. 283, 19845–19853 (2008).

    CAS  PubMed  Google Scholar 

  39. 39.

    Mesnage, S. et al. Molecular basis for bacterial peptidoglycan recognition by LysM domains. Nat. Commun. 5, 4269 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zwart, P. H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).

    CAS  PubMed  Google Scholar 

  43. 43.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  44. 44.

    Joosten, R. P., Joosten, K., Cohen, S. X., Vriend, G. & Perrakis, A. Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank. Bioinformatics 27, 3392–3398 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Horsburgh, M. J. et al. σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J. Bacteriol. 184, 5457–5467 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


L.S.G.-D. is a PhD student funded by the Mexican government through a CONACYT scholarship. H.W.-M. is supported by a BBSRC MIBTP studentship. We thank the BBSRC and EPSRC for funding to upgrade the 600- and 800-MHz spectrometers, respectively (grant numbers BB/R000727/1 and EP/S01358X/1). The work in the laboratory of I.S. is supported by the Foundation for Polish Science (FNP) program, co-financed by the European Union under the European Regional Development Fund (grant TEAMTECH/2016-3/19).

Author information




S.M. conceived the project and designed experiments with M.P.W. and A.L.L. A.M.H. and A.J.R. assigned the SH3b spectrum. L.S.G.-D. carried out all NMR experiments and analyzed them with the help of A.M.H. and M.P.W. B.S. and L.S.G.-D. built all SH3b recombinant proteins to carry out functional assays and crystallographic analyses. A.W.-M. crystallized the protein and solved the structure with the help of A.L.L. E.J. and I.S. provided reagents. L.S.G.-D., H.W.-M., B.S., A.M.H., M.P.W., A.L.L. and S.M. analyzed the data. L.S.G.-D., S.M., A.L.L. and M.P.W. wrote the manuscript.

Corresponding authors

Correspondence to Mike P. Williamson or Andrew L. Lovering or Stéphane Mesnage.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5 and Supplementary Figures 1–12

Reporting Summary

Supplementary Note

Synthetic Procedures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Delgado, L.S., Walters-Morgan, H., Salamaga, B. et al. Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b. Nat Chem Biol 16, 24–30 (2020).

Download citation

Further reading