Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pass-back chain extension expands multimodular assembly line biosynthesis

Abstract

Modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymatic assembly lines are large and dynamic protein machines that generally effect a linear sequence of catalytic cycles. Here, we report the heterologous reconstitution and comprehensive characterization of two hybrid NRPS–PKS assembly lines that defy many standard rules of assembly line biosynthesis to generate a large combinatorial library of cyclic lipodepsipeptide protease inhibitors called thalassospiramides. We generate a series of precise domain-inactivating mutations in thalassospiramide assembly lines, and present evidence for an unprecedented biosynthetic model that invokes intermodule substrate activation and tailoring, module skipping and pass-back chain extension, whereby the ability to pass the growing chain back to a preceding module is flexible and substrate driven. Expanding bidirectional intermodule domain interactions could represent a viable mechanism for generating chemical diversity without increasing the size of biosynthetic assembly lines and challenges our understanding of the potential elasticity of multimodular megaenzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterologous reconstitution of thalassospiramide biosynthetic gene clusters in a P. putida host.
Fig. 2: Ttc and Ttm assembly lines and structures of associated cyclic lipodepsipeptide products.
Fig. 3: Selective inactivation of assembly line enzymatic domains alters product formation.
Fig. 4: Model for thalassospiramide biosynthesis by Ttm C2 inactivation mutant.
Fig. 5: Model for thalassospiramide A biosynthesis by Ttc.

Similar content being viewed by others

Data availability

The ttc and ttm biosynthetic gene cluster sequences are available in the MIBiG database (accession BGC0001050 and BGC0001876). Plasmids pCAP-BAC (#120229), pJZ001 (#120230) and pJZ002 (#120231) are available at Addgene.

References

  1. Weissman, K. J. The structural biology of biosynthetic megaenzymes. Nat. Chem. Biol. 11, 660–670 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Cane, D. E. Programming of erythromycin biosynthesis by a modular polyketide synthase. J. Biol. Chem. 285, 27517–27523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Robbel, L. & Marahiel, M. A. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J. Biol. Chem. 285, 27501–27508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Helfrich, E. J. & Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 33, 231–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Sussmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis—principles and prospects. Angew. Chem. Int. Ed. Engl. 56, 3770–3821 (2017).

    Article  PubMed  CAS  Google Scholar 

  6. Magarvey, N. A., Haltli, B., He, M., Greenstein, M. & Hucul, J. A. Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant gram-positive pathogens. Antimicrob. Agents Chemother. 50, 2167–2177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Felnagle, E. A., Rondon, M. R., Berti, A. D., Crosby, H. A. & Thomas, M. G. Identification of the biosynthetic gene cluster and an additional gene for resistance to the antituberculosis drug capreomycin. Appl. Environ. Microbiol. 73, 4162–4170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas, M. G., Chan, Y. A. & Ozanick, S. G. Deciphering tuberactinomycin biosynthesis: isolation, sequencing, and annotation of the viomycin biosynthetic gene cluster. Antimicrob. Agents Chemother. 47, 2823–2830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Du, L., Sanchez, C., Chen, M., Edwards, D. J. & Shen, B. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem. Biol. 7, 623–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Gehring, A. M. et al. Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis. Chem. Biol. 5, 573–586 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Oh, D. C., Strangman, W. K., Kauffman, C. A., Jensen, P. R. & Fenical, W. Thalassospiramides A and B, immunosuppressive peptides from the marine bacterium Thalassospira sp. Org. Lett. 9, 1525–1528 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Ross, A. C. et al. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria. J. Am. Chem. Soc. 135, 1155–1162 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, W. et al. Family-wide structural characterization and genomic comparisons decode the diversity-oriented biosynthesis of thalassospiramides by marine Proteobacteria. J. Biol. Chem. 291, 27228–27238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyazaki, R. & van der Meer, J. R. A new large-DNA-fragment delivery system based on integrase activity from an integrative and conjugative element. Appl. Environ. Microbiol. 79, 4440–4447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinez-Garcia, E., Nikel, P. I., Aparicio, T. & de Lorenzo, V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb. Cell Fact. 13, 159 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhang, J. J., Tang, X., Zhang, M., Nguyen, D. & Moore, B. S. Broad-host-range expression reveals native and host regulatory elements that influence heterologous antibiotic production in Gram-negative bacteria. MBio 8, e01291 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Labby, K. J., Watsula, S. G. & Garneau-Tsodikova, S. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis. Nat. Prod. Rep. 32, 641–653 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Rausch, C., Hoof, I., Weber, T., Wohlleben, W. & Huson, D. H. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol. Biol. 7, 78 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Crosby, J. & Crump, M. P. The structural role of the carrier protein–active controller or passive carrier. Nat. Prod. Rep. 29, 1111–1137 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Calderone, C. T., Bumpus, S. B., Kelleher, N. L., Walsh, C. T. & Magarvey, N. A. A ketoreductase domain in the PksJ protein of the bacillaene assembly line carries out both alpha- and beta-ketone reduction during chain growth. Proc. Natl Acad. Sci. USA 105, 12809–12814 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whicher, J. R. et al. Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 510, 560–564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Drake, E. J. et al. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 529, 235–238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reimer, J. M., Aloise, M. N., Harrison, P. M. & Schmeing, T. M. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529, 239–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Miller, B. R., Drake, E. J., Shi, C., Aldrich, C. C. & Gulick, A. M. Structures of a nonribosomal peptide synthetase module bound to MbtH-like proteins support a highly dynamic domain architecture. J. Biol. Chem. 291, 22559–22571 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marahiel, M. A. A structural model for multimodular NRPS assembly lines. Nat. Prod. Rep. 33, 136–140 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Tarry, M. J., Haque, A. S., Bui, K. H. & Schmeing, T. M. X-ray crystallography and electron microscopy of cross- and multi-module nonribosomal peptide synthetase proteins reveal a flexible architecture. Structure 25, 783–793 e784 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Bozhuyuk, K. A. J. et al. De novo design and engineering of non-ribosomal peptide synthetases. Nat. Chem. 10, 275–281 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Dunn, B. J., Watts, K. R., Robbins, T., Cane, D. E. & Khosla, C. Comparative analysis of the substrate specificity of trans- versus cis-acyltransferases of assembly line polyketide synthases. Biochemistry 53, 3796–3806 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Awakawa, T. et al. Salinipyrone and pacificanone are biosynthetic by-products of the rosamicin polyketide synthase. Chembiochem 16, 1443–1447 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moss, S. J., Martin, C. J. & Wilkinson, B. Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity. Nat. Prod. Rep. 21, 575–593 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Thomas, I., Martin, C. J., Wilkinson, C. J., Staunton, J. & Leadlay, P. F. Skipping in a hybrid polyketide synthase. Evidence for ACP-to-ACP chain transfer. Chem. Biol. 9, 781–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Wenzel, S. C., Meiser, P., Binz, T. M., Mahmud, T. & Muller, R. Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. Angew. Chem. Int. Ed. Engl. 45, 2296–2301 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Mootz, H. D. et al. Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J. Am. Chem. Soc. 124, 10980–10981 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Gao, L. et al. Module and individual domain deletions of NRPS to produce plipastatin derivatives in Bacillus subtilis. Microb. Cell Fact. 17, 84 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yu, D., Xu, F., Zhang, S. & Zhan, J. Decoding and reprogramming fungal iterative nonribosomal peptide synthetases. Nat. Commun. 8, 15349 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Linne, U. & Marahiel, M. A. Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry 39, 10439–10447 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Belshaw, P. J., Walsh, C. T. & Stachelhaus, T. Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284, 486–489 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Lu, L. et al. Mechanism of action of thalassospiramides, a new class of calpain inhibitors. Sci. Rep. 5, 8783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fischbach, M. A. & Clardy, J. One pathway, many products. Nat. Chem. Biol. 3, 353–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Firn, R. D. & Jones, C. G. Natural products—a simple model to explain chemical diversity. Nat. Prod. Rep. 20, 382–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Davidsen, J. M. & Townsend, C. A. In vivo characterization of nonribosomal peptide synthetases NocA and NocB in the biosynthesis of nocardicin A. Chem. Biol. 19, 297–306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thirlway, J. et al. Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity. Angew. Chem. Int. Ed. Engl. 51, 7181–7184 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, J. J., Yamanaka, K., Tang, X. & Moore, B. S. Direct cloning and heterologous expression of natural product biosynthetic gene clusters by transformation-associated recombination. Methods Enzymol. 621, 87–110 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhang, H., Fang, L., Osburne, M. S. & Pfeifer, B. A. The continuing development of E. coli as a heterologous host for complex natural product biosynthesis. Methods Mol. Biol. 1401, 121–134 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tang, X. et al. Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. ACS Chem. Biol. 10, 2841–2849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choi, K. H. & Schweizer, H. P. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat. Protoc. 1, 153–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Davison, J. et al. Insights into the function of trans-acyl transferase polyketide synthases from the SAXS structure of a complete module. Chem. Sci. 5, 3081–3095 (2014).

    Article  CAS  Google Scholar 

  49. Tanovic, A., Samel, S. A., Essen, L. O. & Marahiel, M. A. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321, 659–663 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Dutta, S. et al. Structure of a modular polyketide synthase. Nature 510, 512–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Edwards, A. L., Matsui, T., Weiss, T. M. & Khosla, C. Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase. J. Mol. Biol. 426, 2229–2245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keatinge-Clay, A. Crystal structure of the erythromycin polyketide synthase dehydratase. J. Mol. Biol. 384, 941–953 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Akey, D. L. et al. Crystal structures of dehydratase domains from the curacin polyketide biosynthetic pathway. Structure 18, 94–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Al-Mestarihi, A. H. et al. Adenylation and S-methylation of cysteine by the bifunctional enzyme TioN in thiocoraline biosynthesis. J. Am. Chem. Soc. 136, 17350–17354 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Miller, B. R., Sundlov, J. A., Drake, E. J., Makin, T. A. & Gulick, A. M. Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases. Proteins 82, 2691–2702 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sawitzke, J. A. et al. Recombineering: highly efficient in vivo genetic engineering using single-strand oligos. Methods Enzymol. 533, 157–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.R. van der Meer (University of Lausanne) for providing plasmid pRMR6K-Gm, V. de Lorenzo (National Center for Biotechnology-CSIC) for providing strain P. putida EM383, and D.L. Court (National Cancer Institute, NIH) for providing strain E. coli HME68. We are grateful to A. Edlund (J. Craig Venter Institute), P.Y. Qian (Hong Kong University of Science and Technology), H. Xia (Shanghai Institutes for Biological Sciences, CAS) and W. Fenical and P.R. Jensen (Scripps Institution of Oceanography, UCSD) for facilitating access to equipment, chemical standards and bacterial strains. We also thank Y. Kudo, P.A. Jordan, J.R. Chekan, L.T. Hoang and S. Carreto for helpful discussion and technical assistance. The research reported has been supported by National Institutes of Health grants F31-AI129299 to J.J.Z. and R01-GM085770 to B.S.M.

Author information

Authors and Affiliations

Authors

Contributions

J.J.Z. and B.S.M. designed the study. J.J.Z., X.T. and A.C.R. performed cloning, gene deletion and other molecular biology experiments. J.J.Z. and X.T. performed heterologous expression and chemical extraction experiments. J.J.Z. and T.H. performed mass spectrometry experiments and analyzed mass spectrometry data. J.J.Z. and B.S.M. analyzed all data and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Bradley S. Moore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1–24b.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.J., Tang, X., Huan, T. et al. Pass-back chain extension expands multimodular assembly line biosynthesis. Nat Chem Biol 16, 42–49 (2020). https://doi.org/10.1038/s41589-019-0385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0385-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing