Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dimerization-based fluorogenic dye-aptamer module for RNA imaging in live cells

Abstract

Live-cell imaging of RNA has remained a challenge because of the lack of naturally fluorescent RNAs. Recently developed RNA aptamers that can light-up small fluorogenic dyes could overcome this limitation, but they still suffer from poor brightness and photostability. Here, we propose the concept of a cell-permeable fluorogenic dimer of self-quenched sulforhodamine B dyes (Gemini-561) and the corresponding dimerized aptamer (o-Coral) that can drastically enhance performance of the current RNA imaging method. The improved brightness and photostability, together with high affinity of this complex, allowed direct fluorescence imaging in live mammalian cells of RNA polymerase III transcription products as well as messenger RNAs labeled with a single copy of the aptamer; that is, without tag multimerization. The developed fluorogenic module enables fast and sensitive detection of RNA inside live cells, while the proposed design concept opens the route to new generation of ultrabright RNA probes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design, synthesis and fluorogenicity of Gemini-561.
Fig. 2: Isolation of Gemini-561 lighting-up aptamers by in vitro evolution.
Fig. 3: Characterization and engineering of the evolved molecule.
Fig. 4: Live-cell imaging of o-Coral expressed from Pol II and Pol III promoters.
Fig. 5: Comparative analysis of photostability by fluorescence microscopy and spectroscopy.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information file.

References

  1. Levine, J. H., Lin, Y. & Elowitz, M. B. Functional roles of pulsing in genetic circuits. Science 342, 1193–1200 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    CAS  PubMed  Google Scholar 

  3. Xue, L., Karpenko, I. A., Hiblot, J. & Johnsson, K. Imaging and manipulating proteins in live cells through covalent labeling. Nat. Chem. Biol. 11, 917–923 (2015).

    CAS  PubMed  Google Scholar 

  4. Dean, K. M. & Palmer, A. E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10, 512–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    CAS  PubMed  Google Scholar 

  6. Tutucci, E. et al. An improved MS2 system for accurate reporting of the mRNA life cycle. Nat. Methods 15, 81–89 (2018).

    CAS  PubMed  Google Scholar 

  7. Buxbaum, A. R., Haimovich, G. & Singer, R. H. In the right place at the right time: visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. 16, 95–109 (2015).

    CAS  PubMed  Google Scholar 

  8. Bouhedda, F., Autour, A. & Ryckelynck, M. Light-Up RNA aptamers and their cognate fluorogens: from their development to their applications. Int J. Mol. Sci. 19, 44 (2018).

    Google Scholar 

  9. Li, C., Tebo, A. G. & Gautier, A. Fluorogenic labeling strategies for biological imaging. Int. J. Mol. Sci. 18, 1473 (2017).

    PubMed Central  Google Scholar 

  10. Klymchenko, A. S. Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications. Acc. Chem. Res 50, 366–375 (2017).

    CAS  PubMed  Google Scholar 

  11. Zhang, J. et al. Tandem spinach array for mrna imaging in living bacterial cells. Sci. Rep. 5, 17295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Babendure, J. R., Adams, S. R. & Tsien, R. Y. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 125, 14716–14717 (2003).

    CAS  PubMed  Google Scholar 

  13. You, M. & Jaffrey, S. R. Structure and mechanism of RNA mimics of green fluorescent protein. Annu. Rev. Biophys. 44, 187–206 (2015).

    CAS  PubMed  Google Scholar 

  14. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Strack, R. L., Disney, M. D. & Jaffrey, S. R. A superfolding spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat. Methods 10, 1219–1224 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Filonov, G. S., Moon, J. D., Svensen, N. & Jaffrey, S. R. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136, 16299–16308 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Song, W., Strack, R. L., Svensen, N. & Jaffrey, S. R. Plug-and-Play fluorophores extend the spectral properties of spinach. J. Am. Chem. Soc. 136, 1198–1201 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, K. Y., Leslie, B. J., Fei, J., Zhang, J. & Ha, T. Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. J. Am. Chem. Soc. 135, 19033–19038 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Constantin, T. P. et al. Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules. Org. Lett. 10, 1561–1564 (2008).

    CAS  PubMed  Google Scholar 

  20. Murata, A., Sato, S., Kawazoe, Y. & Uesugi, M. Small-molecule fluorescent probes for specific RNA targets. Chem. Commun. 47, 4712–4714 (2011).

    CAS  Google Scholar 

  21. Dolgosheina, E. V. et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9, 2412–2420 (2014).

    CAS  PubMed  Google Scholar 

  22. Tan, X. et al. Fluoromodules consisting of a promiscuous RNA aptamer and red or blue fluorogenic cyanine dyes: selection, characterization, and bioimaging. J. Am. Chem. Soc. 139, 9001–9009 (2017).

    CAS  PubMed  Google Scholar 

  23. Arora, A., Sunbul, M. & Jaschke, A. Dual-colour imaging of RNAs using quencher- and fluorophore-binding aptamers. Nucleic Acids Res. 43, e144 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Sunbul, M. & Jaschke, A. Contact-mediated quenching for RNA imaging in bacteria with a fluorophore-binding aptamer. Angew. Chem. Int. Ed. Engl. 52, 13401–13404 (2013).

    CAS  PubMed  Google Scholar 

  25. Sunbul, M. & Jaschke, A. SRB-2: a promiscuous rainbow aptamer for live-cell RNA imaging. Nucleic Acids Res. 46, e110 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Sparano, B. A. & Koide, K. A strategy for the development of small-molecule-based sensors that strongly fluoresce when bound to a specific RNA. J. Am. Chem. Soc. 127, 14954–14955 (2005).

    CAS  PubMed  Google Scholar 

  27. Shin, I. et al. Live-cell imaging of Pol II promoter activity to monitor gene expression with RNA IMAGEtag reporters. Nucleic Acids Res. 42, e90 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Holeman, L. A., Robinson, S. L., Szostak, J. W. & Wilson, C. Isolation and characterization of fluorophore-binding RNA aptamers. Fold. Des. 3, 423–431 (1998).

    CAS  PubMed  Google Scholar 

  29. Karpenko, I. A. et al. Fluorogenic squaraine dimers with polarity-sensitive folding as bright far-red probes for background-free bioimaging. J. Am. Chem. Soc. 137, 405–412 (2015).

    CAS  PubMed  Google Scholar 

  30. Okamoto, A. ECHO probes: a concept of fluorescence control for practical nucleic acid sensing. Chem. Soc. Rev. 40, 5815–5828 (2011).

    CAS  PubMed  Google Scholar 

  31. Song, W. et al. Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex. Nat. Chem. Biol. 13, 1187–1194 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Warner, K. D. et al. A homodimer interface without base pairs in an RNA mimic of red fluorescent protein. Nat. Chem. Biol. 13, 1195–1201 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS  PubMed  Google Scholar 

  34. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    CAS  PubMed  Google Scholar 

  35. Gotrik, M. et al. Direct selection of fluorescence-enhancing RNA aptamers. J. Am. Chem. Soc. 140, 3583–3591 (2018).

    CAS  PubMed  Google Scholar 

  36. Autour, A., Westhof, E. & Ryckelynck, M. iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications. Nucleic Acids Res. 44, 2491–2500 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Autour, A. et al. Fluorogenic RNA mango aptamers for imaging small non-coding RNAs in mammalian cells. Nat. Commun. 9, 656 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Ryckelynck, M. et al. Using droplet-based microfluidics to improve the catalytic properties of RNA under multiple-turnover conditions. RNA 21, 458–469 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shulov, I. et al. Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting. Nanoscale 7, 18198–18210 (2015).

    CAS  PubMed  Google Scholar 

  40. Collot, M. et al. Calcium rubies: a family of red-emitting functionalizable indicators suitable for two-photon Ca2+ imaging. J. Am. Chem. Soc. 134, 14923–14931 (2012).

    CAS  PubMed  Google Scholar 

  41. Despras, G. et al. H-Rubies, a new family of red emitting fluorescent pH sensors for living cells. Chem. Sci. 6, 5928–5937 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Duval, M. et al. in RNA Structure and Folding: Biophysical Techniques and Prediction Methods (eds Klostermeier, D. & Hammann, C.) 29–50 (De Gruyter, 2013).

  43. Trachman, R. J. 3rd, Truong, L. & Ferre-D’Amare, A. R. Structural principles of fluorescent RNA aptamers. Trends Pharm. Sci. 38, 928–939 (2017).

    CAS  PubMed  Google Scholar 

  44. Filonov, G. S., Kam, C. W., Song, W. & Jaffrey, S. R. In-gel imaging of RNA processing using Broccoli reveals optimal aptamer expression strategies. Chem. Biol. 22, 649–660 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Good, P. D. et al. Expression of small, therapeutic RNAs in human cell nuclei. Gene Ther. 4, 45–54 (1997).

    CAS  PubMed  Google Scholar 

  46. Guet, D. et al. Combining spinach-tagged RNA and gene localization to image gene expression in live yeast. Nat. Commun. 6, 8882 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    CAS  PubMed  Google Scholar 

  48. Baugh, C., Grate, D. & Wilson, C. 2.8 A crystal structure of the malachite green aptamer. J. Mol. Biol. 301, 117–128 (2000).

    CAS  PubMed  Google Scholar 

  49. Shelke, S. A. et al. Structural basis for activation of fluorogenic dyes by an RNA aptamer lacking a G-quadruplex motif. Nat. Commun. 9, 4542 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Guo, J. U. & Bartel, D. P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353, aaf5371 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Leblay, A.-C. Helfer, E. Gutzwiller and G. Lieber for technical assistance as well as P. Romby and I. Caldelari for fruitful scientific discussion. We thank O. Kucherak for synthesis of intermediate 2, E. Real for scientific discussions and J. Valanciunaite and N. Humbert for the technical assistance. This work received financial support from Agence Nationale de la Recherche (BrightRiboProbes, grant no. ANR-16-CE11-0010-01/02 to M.R. and A.S.K.) and BacNet (grant no. ANR-10-BINF_02_02 to M.R.) and European Research Council ERC Consolidator grant BrightSens (no. 648528 to A.S.K.). This work has also been published under the framework of the LabEx (no. ANR-10-LABX-0036_NETRNA to M.R.) and benefits from a funding from the state managed by the French National Research Agency as part of the Investments for the Future Program. It was also supported by the Université de Strasbourg and the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Contributions

A.K., M.C. and M.R. proposed the concept of this study. M.C. synthesized Gemini-561. F.B. and K.T.F. performed main part of experimental work and data analysis with help and supervision of M.R., M.C. and A.K. F.B. and M.R. developed the aptamer o-Coral, including its variants and characterized their structure with the help of S.M. A.A. and F.B. characterized the contribution of the different selected mutations. K.T.F., M.C., F.B. and A.K. characterized Gemini-561–o-Coral fluorescence properties in solution. F.B. generated plasmids encoding o-Coral. K.T.F. realized all cellular studies and all fluorescence imaging of the cells, with help of A.K. and M.C.

Corresponding authors

Correspondence to Mayeul Collot, Andrey Klymchenko or Michael Ryckelynck.

Ethics declarations

Competing interests

F.B., K.T.F., M.C., A.K., M.R., the University of Strasbourg and the CNRS have filed a patent application covering the technology presented in this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Tables 1–3 and Supplementary Figures 1–27.

Reporting Summary

Supplementary Note

Synthetic procedures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouhedda, F., Fam, K.T., Collot, M. et al. A dimerization-based fluorogenic dye-aptamer module for RNA imaging in live cells. Nat Chem Biol 16, 69–76 (2020). https://doi.org/10.1038/s41589-019-0381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0381-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing