Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncoupling of PARP1 trapping and inhibition using selective PARP1 degradation

Abstract

PARP1 inhibitors (PARPi) are known to kill tumor cells via two mechanisms (PARP1 catalytic inhibition and PARP1 trapping). The relative contribution of these two pathways in mediating the cytotoxicity of PARPi, however, is not well understood. Here we designed a series of small molecule PARP degraders. Treatment with one such compound iRucaparib-AP6 results in highly efficient and specific PARP1 degradation. iRucaparib-AP6 blocks the enzymatic activity of PARP1 in vitro, and PARP1-mediated poly-ADP-ribosylation signaling in intact cells. This strategy mimics PARP1 genetic depletion, which enables the pharmacological decoupling of PARP1 inhibition from PARP1 trapping. Finally, by depleting PARP1, iRucaparib-AP6 protects muscle cells and primary cardiomyocytes from DNA-damage-induced energy crisis and cell death. In summary, these compounds represent ‘non-trapping’ PARP1 degraders that block both the catalytic activity and scaffolding effects of PARP1, providing an ideal approach for the amelioration of the various pathological conditions caused by PARP1 hyperactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targeted degradation of PARP1.
Fig. 2: iRucaparib-AP6 induces PARP1 degradation.
Fig. 3: iRucaparib-AP6 selectively targets PARP1 for degradation.
Fig. 4: iRucaparib-AP6 inhibits PARylation-mediated signaling events downstream of PARP1.
Fig. 5: iRucaparib-AP6 is a non-trapping PARP1 degrader.
Fig. 6: iRucaparib-AP6 protects cells from genotoxicity-induced cell death.

Similar content being viewed by others

Data availability

The MS data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD014838 (Supplementary Dataset 1), PXD014836 and PXD014837 (Supplementary Datasets 2 and 3), PXD014840 (Supplementary Datasets 4 and 5), and PXD014839 (Supplementary Dataset 6). Source data for Figs. 2d, 5d and 6e,f, and Supplementary Fig. 12a–f are available online. Full uncropped blots are shown in Supplementary Fig. 14.

References

  1. D’Amours, D., Desnoyers, S., D’Silva, I. & Poirier, G. G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342, 249–268 (1999).

    PubMed  PubMed Central  Google Scholar 

  2. Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    CAS  PubMed  Google Scholar 

  3. Hottiger, M. O. Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu. Rev. Biochem. 84, 227–263 (2015).

    CAS  PubMed  Google Scholar 

  4. Chambon, P., Weill, J. D. & Mandel, P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 11, 39–43 (1963).

    CAS  PubMed  Google Scholar 

  5. Gupte, R., Liu, Z. & Kraus, W. L. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 31, 101–126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, C., Vyas, A., Kassab, M. A., Singh, A. K. & Yu, X. The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res. 45, 8129–8141 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  PubMed  Google Scholar 

  8. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  PubMed  Google Scholar 

  9. Pommier, Y., O’Connor, M. J. & de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med. 8, 362ps317 (2016).

    Google Scholar 

  10. Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Berger, N. A. et al. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br. J. Pharm. 175, 192–222 (2018).

    CAS  Google Scholar 

  12. Kam, T. I. et al. Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science 362, eaat8407 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Shieh, W. M. et al. Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J. Biol. Chem. 273, 30069–30072 (1998).

    CAS  PubMed  Google Scholar 

  14. Yu, S. W. et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259–263 (2002).

    CAS  PubMed  Google Scholar 

  15. Wang, Y., Dawson, V. L. & Dawson, T. M. Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp. Neurol. 218, 193–202 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Burslem, G. M. & Crews, C. M. Small-molecule modulation of protein homeostasis. Chem. Rev. 117, 11269–11301 (2017).

    CAS  PubMed  Google Scholar 

  17. Ferraris, D. V. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J. Med. Chem. 53, 4561–4584 (2010).

    CAS  PubMed  Google Scholar 

  18. Thorsell, A. G. et al. Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J. Med. Chem. 60, 1262–1271 (2017).

    CAS  PubMed  Google Scholar 

  19. Yamanaka, H., Penning, C. A., Willis, E. H., Wasson, D. B. & Carson, D. A. Characterization of human poly(ADP-ribose) polymerase with autoantibodies. J. Biol. Chem. 263, 3879–3883 (1988).

    CAS  PubMed  Google Scholar 

  20. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    PubMed  Google Scholar 

  21. Galdeano, C. et al. Structure-guided design and optimization of small molecules targeting the protein–protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J. Med. Chem. 57, 8657–8663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wahlberg, E. et al. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat. Biotechnol. 30, 283–288 (2012).

    CAS  PubMed  Google Scholar 

  23. Knezevic, C. E. et al. Proteome-wide profiling of clinical PARP inhibitors reveals compound-specific secondary targets. Cell Chem. Biol. 23, 1490–1503 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kronke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. An, J. et al. pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4CRBN ubiquitin ligase. Nat. Commun. 8, 15398 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ishoey, M. et al. Translation termination factor GSPT1 is a phenotypically relevant off-target of heterobifunctional phthalimide degraders. ACS Chem. Biol. 13, 553–560 (2018).

    CAS  PubMed  Google Scholar 

  27. Zhang, Y., Wang, J., Ding, M. & Yu, Y. Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat. Methods 10, 981–984 (2013).

    CAS  PubMed  Google Scholar 

  28. Zhen, Y., Zhang, Y. & Yu, Y. A cell-line-specific atlas of PARP-mediated protein Asp/Glu-ADP-ribosylation in breast cancer. Cell Rep. 21, 2326–2337 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pacher, P., Beckman, J. S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

    CAS  PubMed  Google Scholar 

  30. Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Murai, J. & Pommier, Y. PARP trapping beyond homologous recombination and platinum sensitivity in cancers. Annu. Rev. Cancer Biol. 3, 131–150 (2019).

    Google Scholar 

  32. Dawson, T. M. & Dawson, V. L. Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu. Rev. Pharmacol. Toxicol. 57, 437–454 (2017).

    CAS  PubMed  Google Scholar 

  33. Eliasson, M. J. et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 3, 1089–1095 (1997).

    CAS  PubMed  Google Scholar 

  34. Yang, Z., Zingarelli, B. & Szabo, C. Effect of genetic disruption of poly(ADP-ribose) synthetase on delayed production of inflammatory mediators and delayed necrosis during myocardial ischemia-reperfusion injury. Shock 13, 60–66 (2000).

    CAS  PubMed  Google Scholar 

  35. Zheng, J., Devalaraja-Narashimha, K., Singaravelu, K. & Padanilam, B. J. Poly(ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury. Am. J. Physiol. Ren. Physiol. 288, F387–F398 (2005).

    CAS  Google Scholar 

  36. Hoch, N. C. et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541, 87–91 (2017).

    CAS  PubMed  Google Scholar 

  37. Li, B., Luo, C., Chowdhury, S., Gao, Z. H. & Liu, J. L. Parp1 deficient mice are protected from streptozotocin-induced diabetes but not caerulein-induced pancreatitis, independent of the induction of Reg family genes. Regul. Pept. 186, 83–91 (2013).

    CAS  PubMed  Google Scholar 

  38. Pirinen, E. et al. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19, 1034–1041 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Q. J. et al. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J. Clin. Invest. 121, 2447–2456 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu, R. et al. Quantitative secretomic analysis identifies extracellular protein factors that modulate the metastatic phenotype of non-small cell lung cancer. J. Proteome Res. 15, 477–486 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. James, D. I. et al. First-in-class chemical probes against poly(ADP-ribose) glycohydrolase (PARG) inhibit DNA repair with differential pharmacology to olaparib. ACS Chem. Biol. 11, 3179–3190 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. A. Hill (UT Southwestern Medical Center) for sharing primary rat neonatal cardiomyocytes and X. Zhong and C. Kim for help with the immunofluorescence microscopy experiments and PARP1 immunoprecipitation experiments, respectively. We thank X. Yu (City of Hope) for providing the GFP-PARP1 construct. We also thank X. D. Wang, L. Yuan and the other members of the Yu laboratory for helpful discussions. This work was supported by grants from the National Institutes of Health (GM122932 to Y.Y. and CA226419 to C.C.) and the Welch foundation (I-1800 to Y.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. conceived the study and designed the overall strategy. L.H., C.C. and Y.Y. designed and synthesized the PARP1 degraders. S.W. and Y.Y. designed all the biochemical and cell biology experiments. S.W., J.H. and P.L. performed biochemical and cell biology experiments. S.W. and Q.D. performed quantitative MS. Q.-J.Z. and Z.-P.L. contributed reagents and technical advice. S.W. and Y.Y. analyzed and interpreted the data. S.W., L.H., C.C. and Y.Y. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Chuo Chen or Yonghao Yu.

Ethics declarations

Competing interests

Y.Y. receives research support from Pfizer. A provisional patent application on the PARP degraders and technologies described herein has been filed by Y.Y., C.C., S. W. and L. H.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–14 and Supplementary Table 1

Reporting Summary

Supplementary Note

Synthetic Procedures

Supplementary Dataset 1

Quantified proteomic data for primary cardiomyocytes treated with DMSO, iRucaparib-AP5 or iRucaparib-AP6 (1 μM) for 24 h.

Supplementary Dataset 2

Quantified proteomic data for HeLa cells treated with DMSO, iRucaparib-TP3 (5 μM) or iRucaparib-TP3 (5 μM) plus Rucaparib (1 μM) for 24 h.

Supplementary Dataset 3

Quantified proteomic data for BT-549 cells treated with DMSO, iRucaparib-TP3 (5 μM) or vRucaparib-TP4 (20 μM) for 24 h.

Supplementary Dataset 4

Quantified PARylated proteomic data for SILAC-labeled HeLa cells treated with DMSO and Rucaparib or DMSO and iRucaparib-AP6 (10 μM).

Supplementary Dataset 5

Quantified PARylated proteomic data for SILAC-labeled HeLa cells treated with DMSO and Rucaparib or DMSO and iRucaparib-TP3 (10 μM).

Supplementary Dataset 6

Quantified chromatin proteomic data for HeLa cells treated with MMS and DMSO, MMS and Rucaparib or MMS and iRucaparib-AP6 for 24 h.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Han, L., Han, J. et al. Uncoupling of PARP1 trapping and inhibition using selective PARP1 degradation. Nat Chem Biol 15, 1223–1231 (2019). https://doi.org/10.1038/s41589-019-0379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0379-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research