Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p63 is a cereblon substrate involved in thalidomide teratogenicity

Abstract

Cereblon (CRBN) is a primary target of thalidomide and mediates its multiple pharmacological activities, including teratogenic and antimyeloma activities. CRBN functions as a substrate receptor of the E3 ubiquitin ligase CRL4, whose substrate specificity is modulated by thalidomide and its analogs. Although a number of CRL4CRBN substrates have recently been identified, the substrate involved in thalidomide teratogenicity is unclear. Here we show that p63 isoforms are thalidomide-dependent CRL4CRBN neosubstrates that are responsible, at least in part, for its teratogenic effects. The p53 family member p63 is associated with multiple developmental processes. ∆Np63α is essential for limb development, while TAp63α is important for cochlea development and hearing. Using a zebrafish model, we demonstrate that thalidomide exerts its teratogenic effects on pectoral fins and otic vesicles by inducing the degradation of ∆Np63α and TAp63α, respectively. These results may contribute to the invention of new thalidomide analogs lacking teratogenic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ∆Np63α and TAp63α are downstream factors of the thalidomide–CRL4CRBN pathway.
Fig. 2: ∆Np63α and TAp63α are neosubstrates of CRL4CRBN.
Fig. 3: Overexpression of z∆Np63 reverses thalidomide-induced fin malformation in zebrafish.
Fig. 4: z∆Np63, but not zTAp63, suppresses fin malformations in zebrafish.
Fig. 5: Overexpression of zTAp63 reverses thalidomide-induced developmental defects of otic vesicles in zebrafish.
Fig. 6: Model of the molecular mechanism of thalidomide teratogenicity.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information or are available from the corresponding author on reasonable request.

References

  1. Rehman, W., Arfons, L. M. & Lazarus, H. M. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther. Adv. Hematol. 2, 291–308 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Vargesson, N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res. C Embryo Today 105, 140–156 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bartlett, J. B., Dredge, K. & Dalgleish, A. G. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat. Rev. Cancer 4, 314–322 (2004).

    CAS  PubMed  Google Scholar 

  4. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    CAS  Google Scholar 

  5. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20 (2005).

    CAS  PubMed  Google Scholar 

  6. Moon, A. M. & Capecchi, M. R. Fgf8 is required for outgrowth and patterning of the limbs. Nat. Genet. 26, 455–459 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lewandoski, M., Sun, X. & Martin, G. R. Fgf8 signalling from the AER is essential for normal limb development. Nat. Genet. 26, 460–463 (2000).

    CAS  PubMed  Google Scholar 

  8. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    CAS  PubMed  Google Scholar 

  9. Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    PubMed  Google Scholar 

  10. Kronke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature 523, 183–188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature 535, 252–257 (2016).

    CAS  PubMed  Google Scholar 

  12. An, J. et al. pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4(CRBN) ubiquitin ligase. Nat. Commun. 8, 15398 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife 7, e38430 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Matyskiela, M. E. et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol. 14, 981–987 (2018).

    CAS  PubMed  Google Scholar 

  15. Rinne, T., Hamel, B., van Bokhoven, H. & Brunner, H. G. Pattern of p63 mutations and their phenotypes—update. Am. J. Med. Genet. A. 140, 1396–1406 (2006).

    PubMed  Google Scholar 

  16. Restelli, M. et al. DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations. Hum. Mol. Genet. 23, 3830–3842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    CAS  PubMed  Google Scholar 

  18. Boughner, J. C. et al. p63 expression plays a role in developmental rate, embryo size, and local morphogenesis. Dev. Dyn. 257, 779–787 (2018).

    Google Scholar 

  19. Terrinoni, A. et al. Role of p63 and the Notch pathway in cochlea development and sensorineural deafness. Proc. Natl Acad. Sci. USA 110, 7300–7305 (2013).

    CAS  PubMed  Google Scholar 

  20. Rouleau, M. et al. TAp63 is important for cardiac differentiation of embryonic stem cells and heart development. Stem Cells 29, 1672–1683 (2011).

    CAS  PubMed  Google Scholar 

  21. Lapi, E. et al. S100A2 gene is a direct transcriptional target of p53 homologues during keratinocyte differentiation. Oncogene 25, 3628–3637 (2006).

    CAS  PubMed  Google Scholar 

  22. Ichikawa, T., Suenaga, Y., Koda, T., Ozaki, T. & Nakagawara, A. TAp63-dependent induction of growth differentiation factor 15 (GDF15) plays a critical role in the regulation of keratinocyte differentiation. Oncogene 27, 409–420 (2008).

    CAS  PubMed  Google Scholar 

  23. Nasevicius, A. & Ekker, S. C. Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet. 26, 216–220 (2000).

    CAS  Google Scholar 

  24. Siamwala, J. H. et al. Nitric oxide rescues thalidomide mediated teratogenicity. Sci. Rep. 2, 679 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Jiang, L. L. et al. Gambogic acid causes fin developmental defect in zebrafish embryo partially via retinoic acid signaling. Reprod. Toxicol. 63, 161–168 (2016).

    CAS  PubMed  Google Scholar 

  26. Bakkers, J., Hild, M., Kramer, C., Furutani-Seiki, M. & Hammerschmidt, M. Zebrafish ΔNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev. Cell 2, 617–627 (2002).

    CAS  PubMed  Google Scholar 

  27. Ando, H. & Okamoto, H. Efficient transfection strategy for the spatiotemporal control of gene expression in zebrafish. Mar. Biotechnol. (NY) 8, 295–303 (2006).

    CAS  Google Scholar 

  28. Chung, F. et al. Thalidomide pharmacokinetics and metabolite formation in mice, rabbits, and multiple myeloma patients. Clin. Cancer Res. 10, 5949–5956 (2004).

    CAS  PubMed  Google Scholar 

  29. Yu, K. & Ornitz, D. M. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development 135, 483–491 (2008).

    CAS  PubMed  Google Scholar 

  30. Petzold, G., Fischer, E. S. & Thoma, N. H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532, 127–130 (2016).

    CAS  PubMed  Google Scholar 

  31. Ramsey, M. R., He, L., Forster, N., Ory, B. & Ellisen, L. W. Physical association of HDAC1 and HDAC2 with p63 mediates transcriptional repression and tumor maintenance in squamous cell carcinoma. Cancer Res. 71, 4373–4379 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hans, S., Liu, D. & Westerfield, M. Pax8 and Pax2a function synergistically in otic specification, downstream of the Foxi1 and Dlx3b transcription factors. Development 131, 5091–5102 (2004).

    CAS  PubMed  Google Scholar 

  33. Saxena, A. & Cooper, K. L. Evolutionary biology: fin to limb within our grasp. Nature 537, 176–177 (2016).

    CAS  PubMed  Google Scholar 

  34. Miller, M. T. & Stromland, K. Teratogen update: thalidomide: a review, with a focus on ocular findings and new potential uses. Teratology 60, 306–321 (1999).

    CAS  PubMed  Google Scholar 

  35. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 397, 714–718 (1999).

    Google Scholar 

  36. Latina, A. et al. ΔNp63 targets cytoglobin to inhibit oxidative stress-induced apoptosis in keratinocytes and lung cancer. Oncogene 35, 1493–1503 (2016).

    CAS  PubMed  Google Scholar 

  37. Wang, G. X. et al. ΔNp63 inhibits oxidative stress-induced cell death, including ferroptosis, and cooperates with the BCL-2 family to promote clonogenic survival. Cell Rep. 21, 2926–2939 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Parman, T., Wiley, M. J. & Wells, P. G. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat. Med. 5, 582–585 (1999).

    CAS  PubMed  Google Scholar 

  39. Hansen, J. M., Harris, K. K., Philbert, M. A. & Harris, C. Thalidomide modulates nuclear redox status and preferentially depletes glutathione in rabbit versus rat limb. J. Pharmacol. Exp. Ther. 300, 768–776 (2002).

    CAS  PubMed  Google Scholar 

  40. Sathyamurphy, A., Freund, S. M., Johnson, C. M., Allen, M. D. & Bycroft, M. Structural basis of p63α SAM domain mutants involved in AEC syndrome. FEBS J. 278, 2680–2688 (2011).

    Google Scholar 

  41. Zhao, X. et al. Zebrafish cul4a, but not cul4b, modulates cardiac and forelimb development by upregulating tbx5a expression. Hum. Mol. Genet. 24, 853–864 (2015).

    PubMed  Google Scholar 

  42. Beedie, S. L. et al. In vivo screening and discovery of novel candidate thalidomide analogs in the zebrafish embryo and chicken embryo model systems. Oncotarget 7, 33237–33245 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Eichner, R. et al. Immunomodulatory drugs disrupt the cereblon–CD147–MCT1 axis to exert antitumor activity and teratogenicity. Nat. Med. 22, 735–743 (2016).

    CAS  PubMed  Google Scholar 

  44. Lee, K. M. et al. Disruption of the cereblon gene enhances hepatic AMPK activity and prevents high-fat diet-induced obesity and insulin resistance in mice. Diabetes 62, 1855–1864 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hagner, P. R. et al. CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood 126, 779–789 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Matyskiela, M. E. et al. A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J. Med. Chem. 61, 535–542 (2018).

    CAS  PubMed  Google Scholar 

  47. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).

    CAS  PubMed  Google Scholar 

  49. Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Manabe, M. Akiyama, S. Shoji and K. Taneda for technical assistance. We also thank A. J. Berk for critical comments on this manuscript. This work was supported by MEXT/JSPS KAKENHI grant numbers 17H06112 (to H.H. and Y.Y.), 15H04288 (to H.A.), 17H04213 (to T.I.), 17K14996 (to J.Y.) and 18H05502 (to T.I.). This work was also supported by MEXT-Supported Program for the Strategic Research Foundation at Private Universities S1411011 (to H.H.) and by PRESTO, JST JPMJPR1531 (to T.I.).

Author information

Authors and Affiliations

Authors

Contributions

T.A.-O. performed most biochemical experiments corresponding to Fig. 1, Fig. 2, Fig. 3e, Fig. 5d, Supplementary Fig. 1, Supplementary Fig. 3 and Supplementary Fig. 6. M.D.S. performed biochemical experiments corresponding to Fig. 1. J.Y. performed biochemical experiments corresponding to Supplementary Fig. 3a. N.S. performed biochemical experiments corresponding to Supplementary Fig. 1g. H.A. and T.S. performed zebrafish experiments corresponding to Fig. 3, Fig. 4, Fig. 5, Supplementary Fig. 4, Supplementary Fig. 5 and Supplementary Fig. 7. T.A.-O., Y.Y., T.I., L.G. and H.H. interpreted all data. H.A. and K.A. interpreted zebrafish data. T.A.-O., T.I., L.G. and H.H. planned this study and wrote the manuscript. L.G. had the initial idea. L.G. and H.H. supervised the project. All authors discussed the results and approved the manuscript.

Corresponding authors

Correspondence to Luisa Guerrini or Hiroshi Handa.

Ethics declarations

Competing interests

H.H. has received research support from Celgene Corporation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asatsuma-Okumura, T., Ando, H., De Simone, M. et al. p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat Chem Biol 15, 1077–1084 (2019). https://doi.org/10.1038/s41589-019-0366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0366-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research