Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A small molecule interacts with VDAC2 to block mouse BAK-driven apoptosis

Abstract

Activating the intrinsic apoptosis pathway with small molecules is now a clinically validated approach to cancer therapy. In contrast, blocking apoptosis to prevent the death of healthy cells in disease settings has not been achieved. Caspases have been favored, but they act too late in apoptosis to provide long-term protection. The critical step in committing a cell to death is activation of BAK or BAX, pro-death BCL-2 proteins mediating mitochondrial damage. Apoptosis cannot proceed in their absence. Here we show that WEHI-9625, a novel tricyclic sulfone small molecule, binds to VDAC2 and promotes its ability to inhibit apoptosis driven by mouse BAK. In contrast to caspase inhibitors, WEHI-9625 blocks apoptosis before mitochondrial damage, preserving cellular function and long-term clonogenic potential. Our findings expand on the key role of VDAC2 in regulating apoptosis and demonstrate that blocking apoptosis at an early stage is both advantageous and pharmacologically tractable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and development of potent small molecule inhibitors of apoptosis.
Fig. 2: WEHI-9625 selectively inhibits apoptosis mediated by mouse BAK.
Fig. 3: WEHI-9625 blocks an early step in BAK activation and preserves long-term clonogenic survival.
Fig. 4: Unique structural features in two distinct regions of mouse BAK confer selectivity to WEHI-9625.
Fig. 5: The tricyclic sulfone series interacts with VDAC2 and requires VDAC2 to inhibit BAK-mediated cell death.
Fig. 6: The interaction between BAK and VDAC2 influences the ability of WEHI-9625 to inhibit BAK.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available upon request. Raw data is available for Figs. 16. Bax knockout and Mcl1 floxed mouse strains are available from Jackson Laboratories. All other materials generated in the course of our study will be made available upon request from the authors.

References

  1. Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. New Eng. J. Med. 374, 311–322 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Linton, S. D. Caspase inhibitors: a pharmaceutical industry perspective. Curr. Top. Med. Chem. 5, 1697–1717 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Cayrol, C. & Girard, J. P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc. Natl Acad. Sci. USA 106, 9021–9026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ekert, P. G. et al. Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J. Cell Biol. 165, 835–842 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kazama, H. et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29, 21–32 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luthi, A. U. et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31, 84–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Marsden, V. S. et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419, 634–637 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R. & Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. White, M. J. et al. Caspases render apoptosis immunologically silent by suppressing mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dixit, V. M. & O’Brien, T. in Cell Death (eds G. Melino & D. Vaux) 282–291 (John Wiley & Sons, 2010).

  13. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Willis, S. N. et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 19, 1294–1305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ryan, J. & Letai, A. BH3 profiling in whole cells by fluorimeter or FACS. Methods 61, 156–164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Veis, D. J., Sorenson, C. M., Shutter, J. R. & Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Alsop, A. E. et al. Dissociation of Bak alpha1 helix from the core and latch domains is required for apoptosis. Nat. Commun. 6, 6841 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Griffiths, G. J. et al. Cellular damage signals promote sequential changes at the N-terminus and BH-1 domain of the pro-apoptotic protein Bak. Oncogene 20, 7668–7676 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Brouwer, J. M. et al. Bak core and latch domains separate during activation, and freed core domains form symmetric homodimers. Mol. Cell 55, 938–946 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Dewson, G. et al. To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol. Cell 30, 369–380 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Ma, S. B. et al. Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death Differ. 21, 1925–1935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei, M. C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iyer, S. et al. Bak apoptotic pores involve a flexible C-terminal region and juxtaposition of the C-terminal transmembrane domains. Cell Death Differ. 22, 1665–1675 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moldoveanu, T. et al. BID-induced structural changes in BAK promote apoptosis. Nat. Struct. Mol. Biol. 20, 589–597 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brouwer, J. M. et al. Conversion of Bim-BH3 from activator to inhibitor of bak through structure-based design. Mol. Cell 68, 659–672 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, X. et al. A small molecule that protects the integrity of the electron transfer chain blocks the mitochondrial apoptotic pathway. Mol. Cell 63, 229–239 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto, T. et al. VDAC1, having a shorter N-terminus than VDAC2 but showing the same migration in an SDS-polyacrylamide gel, is the predominant form expressed in mitochondria of various tissues. J. Proteome Res. 5, 3336–3344 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Roy, S. S., Ehrlich, A. M., Craigen, W. J. & Hajnoczky, G. VDAC2 is required for truncated BID-induced mitochondrial apoptosis by recruiting BAK to the mitochondria. EMBO Rep. 10, 1341–1347 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lazarou, M. et al. Inhibition of Bak activation by VDAC2 is dependent on the Bak transmembrane anchor. J. Biol. Chem. 285, 36876–36883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Naghdi, S., Varnai, P. & Hajnoczky, G. Motifs of VDAC2 required for mitochondrial Bak import and tBid-induced apoptosis. Proc. Natl Acad. Sci. USA 112, E5590–E5599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kollek, M. et al. Transient apoptosis inhibition in donor stem cells improves hematopoietic stem cell transplantation. J. Exp. Med. 214, 2967–2983 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kostic, V., Jackson-Lewis, V., de Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277, 559–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Nir, I., Kedzierski, W., Chen, J. & Travis, G. H. Expression of Bcl-2 protects against photoreceptor degeneration in retinal degeneration slow (rds) mice. J. Neurosci. 20, 2150–2154 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reyes, N. A. et al. Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J. Clin. Invest. 120, 3673–3679 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Someya, S. et al. Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc. Natl Acad. Sci. USA 106, 19432–19437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wei, Q., Dong, G., Chen, J. K., Ramesh, G. & Dong, Z. Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models. Kidney Int. 84, 138–148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, Z. Y., Chua, C. C., Ho, Y. S., Hamdy, R. C. & Chua, B. H. L. Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am. J. Physiol. Heart Circul. Physiol. 280, H2313–H2320 (2001).

    Article  CAS  Google Scholar 

  42. Hotchkiss, R. S. et al. Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J. Immunol. 162, 4148–4156 (1999).

    CAS  PubMed  Google Scholar 

  43. Zhao, H., Yenari, M. A., Cheng, D. Y., Sapolsky, R. M. & Steinberg, G. K. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J. Neurochem. 85, 1026–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Ben-Hail, D. et al. Novel compounds targeting the mitochondrial protein VDAC1 inhibit apoptosis and protect against mitochondrial dysfunction. J. Biol. Chem. 291, 24986–25003 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Niu, X. et al. A small-molecule inhibitor of bax and bak oligomerization prevents genotoxic cell death and promotes neuroprotection. Cell Chem. Biol. 24, 493–506.e495 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garner, T. P. et al. Small-molecule allosteric inhibitors of BAX. Nat. Chem. Biol. 15, 322–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ren, D. et al. The VDAC2-BAK rheostat controls thymocyte survival. Sci. Signal. 2, ra48 (2009).

    Article  PubMed  Google Scholar 

  48. Chin, H. S. et al. VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat. Commun. 9, 4976 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Skwarczynska, M. & Ottmann, C. Protein-protein interactions as drug targets. Future Med. Chem. 7, 2195–2219 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Kabsch, W. Xds Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McCoy, A. J. et al. Phaser crystallographic software. J. App. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  52. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schirle, M., Bantscheff, M. & Kuster, B. Mass spectrometry-based proteomics in preclinical drug discovery. Chem. Biol. 19, 72–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Delconte, R. B. et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat. Immunol. 17, 816–824 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Kedzierski, L. et al. Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling. Elife 6, e20444 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Rautela, J. et al. Generation of novel Id2 and E2-2, E2A and HEB antibodies reveals novel Id2 binding partners and species-specific expression of E-proteins in NK cells. Mol. Immunol. https://doi.org/10.1016/j.molimm.2018.08.017 (2018).

  59. Vizcaino, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Youle (National Institute of Neurological Disorders and Stroke, Bethesda, USA) for providing HCT116 cells, L. Whitehead (The Walter and Eliza Hall Institute, Melbourne, Australia) for assistance with image analysis and the many other colleagues who have shared reagents and contributed to discussions throughout this project. We are grateful for the outstanding animal husbandry provided by The Walter and Eliza Hall Institute Bioservices staff, and expert assistance from the Institute’s Flow Cytometry Facility. This research was undertaken in part using the MX2 beamline at the Australian Synchrotron. Our work was supported by project grants (nos. 1083077 to G.L. and M.F.vD., 1078924 to G.D. and A.W., 1158137 to G.L., P.E.C. and M.F.vD.), program grants (nos. 461219 to B.T.K., 461221 to D.C.S.H. and P.M.C., 1016701 to D.C.S.H. and P.M.C., 1016647 to B.T.K., 1113133 to D.C.S.H., P.M.C. and G.L.), fellowships (nos. 1024620 to E.L., 1022618 to P.M.C., 1079700 to P.E.C., 1043149 to D.C.S.H., 1117089 to G.L. and 1063008 to B.T.K.) and an Independent Research Institutes Infrastructure Support Scheme grant (no. 9000220) from the Australian National Health and Medical Research Council; Additional funding was provided by MuriGen Therapeutics to B.T.K. and D.C.S.H.; by the HEARing CRC to B.T.K. and G.L.; by the DHB Foundation to B.T.K and G.L.; by the Brownless Trust to B.T.K. and G.L.; a fellowship from the Sylvia and Charles Viertel Foundation to B.T.K.; the Australian Cancer Research Fund and a Victorian State Government Operational Infrastructure support grant.

Author information

Authors and Affiliations

Authors

Contributions

B.T.K., D.C.S.H. initiated the project. B.T.K., D.C.S.H. M.F.v.D. and G.L. designed and coordinated the study. G.D., K.L., P.E.C., P.M.C. W.D.F., E.F.L. and K.G.W. advised on various aspects of the study. G.L. supervised the medicinal chemistry team. Y.K., C.T.B., C.G., P.P.S., S.D., R.L., S.B., L.P., T.N., K.G.W. and G.L. designed and/or prepared compounds. A.W. produced protein for structural biology studies. J.M.B, P.M.C. and P.E.C. performed structural biology studies. K.N.L., C.M., S.S.W. and K.L. designed and performed high-throughput screening and assay support. M.F.v.D., M.A.D, L.L. K.McA., M.-X.L, H.S.C., W.D.F., E.L., D.S. and G.D. performed cell and molecular biology experiments. S.C. and R.M.L. performed mouse ex vivo experiments. C.G. performed UV crosslinking experiments. L.F.D., J.J.S. and A.I.W. designed and performed proteomics analysis. B.T.K, G.L. and M.F.v.D wrote the manuscript with major input from D.C.S.H., G.D., K.L., P.E.C., P.M.C and K.G.W. as well as all other authors. B.T.K., D.C.S.H., G.L. and M.F.v.D. acquired funding for this study.

Corresponding authors

Correspondence to Mark F. van Delft or Guillaume Lessene.

Ethics declarations

Competing interests

B.T.K. was a consultant to MuriGen Pty Ltd between 2006 and 2010.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–19 and Supplementary Tables 1–3.

Reporting Summary

Synthetic procedures

Synthetic procedures

Supplementary Dataset 1

iBAQ intensities for proteins identified by compound 7 affinity purification.

Supplementary Dataset 2

iBAQ intensities for proteins identified by compound 8 photocrosslinking, biotinylation and streptavidin capture.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Delft, M.F., Chappaz, S., Khakham, Y. et al. A small molecule interacts with VDAC2 to block mouse BAK-driven apoptosis. Nat Chem Biol 15, 1057–1066 (2019). https://doi.org/10.1038/s41589-019-0365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0365-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research