Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Dynamic membrane topology in an unassembled membrane protein

Abstract

Helical membrane proteins are typically assumed to attain stable transmembrane topologies immediately upon co-translational membrane insertion. Here we show that unassembled monomers of the small multidrug resistance (SMR) family exist in a dynamic equilibrium where the N-terminal transmembrane helix flips in and out of the membrane, with rates that depend on dimerization and the polypeptide sequence. Thus, membrane topology can display rapid dynamics in vivo and can be regulated by post-translational assembly.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topology of EmrE loops.
Fig. 2: Factors affecting topological dynamics.
Fig. 3: Hydrophobicity of TMHs and loops in the E. coli membrane proteome.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Cymer, F., von Heijne, G. & White, S. H. J. Mol. Biol. 427, 999–1022 (2015).

    Article  CAS  Google Scholar 

  2. Marquette, A. & Bechinger, B. Biomolecules 8, 18 (2018).

    Article  Google Scholar 

  3. Bleicken, S. et al. Cell Death Differ. 25, 1717–1731 (2018).

    Article  CAS  Google Scholar 

  4. Park, T., Struck, D. K., Deaton, J. F. & Young, R. Proc. Natl Acad. Sci. USA 103, 19713–19718 (2006).

    Article  CAS  Google Scholar 

  5. Buck, T. M., Wagner, J., Grund, S. & Skach, W. R. Nat. Struct. Mol. Biol. 14, 762–769 (2007).

    Article  CAS  Google Scholar 

  6. Andreev, O. A. et al. Proc. Natl Acad. Sci. USA 107, 4081–4086 (2010).

    Article  CAS  Google Scholar 

  7. LeBarron, J. & London, E. Langmuir 32, 10752–10760 (2016).

    Article  CAS  Google Scholar 

  8. Vitrac, H., MacLean, D. M., Jayaraman, V., Bogdanov, M. & Dowhan, W. Proc. Natl Acad. Sci. USA 112, 13874–13879 (2015).

    Article  CAS  Google Scholar 

  9. Bogdanov, M., Xie, J., Heacock, P. & Dowhan, W. J. Cell Biol. 182, 925–935 (2008).

    Article  CAS  Google Scholar 

  10. Woodall, N. B., Hadley, S., Yin, Y. & Bowie, J. U. Protein Sci. 26, 824–833 (2017).

    Article  CAS  Google Scholar 

  11. Woodall, N. B., Yin, Y. & Bowie, J. U. Nat. Commun. 6, 8099 (2015).

    Article  CAS  Google Scholar 

  12. Fluman, N., Tobiasson, V. & von Heijne, G. Proc. Natl Acad. Sci. USA 114, 7987–7992 (2017).

    Article  CAS  Google Scholar 

  13. Schuldiner, S. Biochim. Biophys. Acta Proteins Proteom. 1794, 748–762 (2009).

    Article  CAS  Google Scholar 

  14. Nasie, I., Steiner-Mordoch, S., Gold, A. & Schuldiner, S. J. Biol. Chem. 285, 15234–15244 (2010).

    Article  CAS  Google Scholar 

  15. Chen, Y.-J. et al. Proc. Natl Acad. Sci. USA 104, 18999–19004 (2007).

    Article  CAS  Google Scholar 

  16. Rapp, M., Seppälä, S., Granseth, E. & von Heijne, G. Science 315, 1282–1284 (2007).

    Article  CAS  Google Scholar 

  17. Seppälä, S., Slusky, J. S., Lloris-Garcerá, P., Rapp, M. & von Heijne, G. Science 328, 1698–1700 (2010).

    Article  Google Scholar 

  18. Van Lehn, R. C., Zhang, B. & Miller, T. F. Elife 4, e08697 (2015).

    Article  Google Scholar 

  19. Bogdanov, M., Zhang, W., Xie, J. & Dowhan, W. Methods 36, 148–171 (2005).

    Article  CAS  Google Scholar 

  20. Hessa, T. et al. Nature 450, 1026–1030 (2007).

    Article  CAS  Google Scholar 

  21. Popot, J. L. & Engelman, D. M. Biochemistry 29, 4031–4037 (1990).

    Article  CAS  Google Scholar 

  22. Schafer, N. P., Truong, H. H., Otzen, D. E., Lindorff-Larsen, K. & Wolynes, P. G. Proc. Natl Acad. Sci. USA 113, 2098–2103 (2016).

    Article  CAS  Google Scholar 

  23. Min, D., Jefferson, R. E., Bowie, J. U. & Yoon, T.-Y. Nat. Chem. Biol. 11, 981–987 (2015).

    Article  CAS  Google Scholar 

  24. Lu, W., Schafer, N. P. & Wolynes, P. G. Nat. Commun. 9, 4949 (2018).

    Article  Google Scholar 

  25. Feige, M. J. & Hendershot, L. M. Mol. Cell 51, 297–309 (2013).

    Article  CAS  Google Scholar 

  26. Baba, T. et al. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  Google Scholar 

  27. Thomason, L. C., Costantino, N. & Court, D. L. E. Curr. Protoc. Mol. Biol. 79, 1.17.1–1.17.8 (2007).

    Article  Google Scholar 

  28. Nasie, I., Steiner-Mordoch, S. & Schuldiner, S. Methods Mol. Biol 1033, 121–130 (2013).

    Article  CAS  Google Scholar 

  29. Odom, O. W., Kudlicki, W., Kramer, G. & Hardesty, B. Anal. Biochem. 245, 249–252 (1997).

    Article  CAS  Google Scholar 

  30. Tsirigos, K. D., Peters, C., Shu, N., Käll, L. & Elofsson, A. Nucleic Acids Res. 43, W401–W407 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Knut and Alice Wallenberg Foundation (2012.0282), the Swedish Research Council (621-2014-3713) and the Swedish Cancer Foundation (15 0888) to G.v.H. N.F. was supported by long-term postdoctoral fellowships from EMBO/Marie Curie Actions (ALTF 211-2014) and from HFSP (LT000277/2015-L).

Author information

Authors and Affiliations

Authors

Contributions

M.S. performed and analyzed kinetic studies of monomeric EmrE and mutants and designed the hydrophobicity mutants. M.E. initiated and analyzed the kinetic studies of monomeric EmrE and of several controls. G.v.H. designed the overall study, analyzed data and wrote the paper. N.F. designed the overall study, analyzed data and wrote the paper, performed and analyzed steady state and some kinetic studies of EmrE monomers, performed and analyzed kinetic measurements of SMR and EmrE dimers, developed the kinetic scheme and performed bioinformatic analyses.

Corresponding authors

Correspondence to Gunnar von Heijne or Nir Fluman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seurig, M., Ek, M., von Heijne, G. et al. Dynamic membrane topology in an unassembled membrane protein. Nat Chem Biol 15, 945–948 (2019). https://doi.org/10.1038/s41589-019-0356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0356-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing