Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and chemistry of lysinoalanine crosslinking in the spirochaete flagella hook

Abstract

The flagellar hook protein FlgE from spirochaete bacteria self-catalyzes the formation of an unusual inter-subunit lysinoalanine (Lal) crosslink that is critical for cell motility. Unlike other known examples of Lal biosynthesis, conserved cysteine and lysine residues in FlgE spontaneously react to form Lal without the involvement of additional enzymes. Oligomerization of FlgE via its D0 and Dc domains drives assembly of the crosslinking site at the D1–D2 domain interface. Structures of the FlgED2 domain, dehydroalanine (DHA) intermediate and Lal crosslinked FlgE subunits reveal successive snapshots of the reaction. Cys178 flips from a buried configuration to release hydrogen sulfide (H2S/HS) and produce DHA. Interface residues provide hydrogen bonds to anchor the active site, facilitate β-elimination of Cys178 and polarize the peptide backbone to activate DHA for reaction with Lys165. Cysteine-reactive molecules accelerate DHA formation, whereas nucleophiles can intercept the DHA intermediate, thereby indicating a potential for Lal crosslink inhibitors to combat spirochaetal diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of lysinoalanine crosslinking reaction catalyzed by Td FlgE.
Fig. 2: Residue requirements for Lal crosslinking.
Fig. 3: Comparison of pre-crosslink, dehydroalanine and post-crosslink FlgE.
Fig. 4: Proposed model of Lal crosslink formation in Td FlgE.

Similar content being viewed by others

Data availability

Coordinates and structure files for WT FlgED2, DHA FlgED2 and Lal crosslinked FlgED1D2:D2 have been deposited to the Protein Data Bank with the following accession codes: 6NDW (WT FlgED2), 6NDT (DHA FlgED2) and 6NDX (FlgED1D2:D2 Lal crosslinked dimer). Raw MS data for all mutants and X-ray diffraction images are available from the corresponding author upon reasonable request. Constructs encoding for full-length and truncated Td FlgE variants are available from the corresponding author upon reasonable request.

References

  1. Kang, H. J. & Baker, E. N. Intramolecular isopeptide bonds: protein crosslinks built for stress? Trends Biochem. Sci. 36, 229–237 (2011).

    Article  CAS  Google Scholar 

  2. Walden, M., Crow, A., Nelson, M. D. & Banfield, M. J. Intramolecular isopeptide but not internal thioester bonds confer proteolytic and significant thermal stability to the S. pyogenes pilus adhesin Spy0125. Proteins Struct. Funct. Bioinforma. 82, 517–527 (2014).

    Article  CAS  Google Scholar 

  3. Kwon, H. et al. Autocatalytically generated Thr-Gln ester bond crosslinks stabilize the repetitive Ig-domain shaft of a bacterial cell surface adhesin. PNAS 111, 1367–1372 (2014).

    Article  CAS  Google Scholar 

  4. Baker, E. N., Squire, C. J. & Young, P. G. Self-generated covalent crosslinks in the cell-surface adhesins of Gram-positive bacteria. Biochem. Soc. Trans. 43, 787–794 (2015).

    Article  CAS  Google Scholar 

  5. Popa, M. P., McKelvey, T. A., Hempel, J. & Hendrix, R. W. Bacteriophage HK97 structure: wholesale covalent crosslinking between the major head shell subunits. J. Virol. 65, 3227–3237 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Williams, M. & Baxter, R. The structure and function of thioester-containing proteins in arthropods. Biophys. Rev. 6, 261–272 (2014).

    Article  CAS  Google Scholar 

  7. Miller, M. R. et al. Spirochaete flagella hook proteins self-catalyse a lysinoalanine covalent crosslink for motility. Nat. Microbiol. 1, 16134 (2016).

    Article  CAS  Google Scholar 

  8. Charon, N. W. et al. The unique paradigm of spirochete motility and chemotaxis. Annu. Rev. Microbiol. 66, 349–370 (2012).

    Article  CAS  Google Scholar 

  9. Wolgemuth, C. W. Flagellar motility of the pathogenic spirochetes. Semin. Cell Dev. Biol. 46, 104–112 (2015).

    Article  CAS  Google Scholar 

  10. Shibata, S. et al. FliK regulates flagellar hook length as an internal ruler. Mol. Microbiol. 64, 1404–1415 (2007).

    Article  CAS  Google Scholar 

  11. Zhao, X. et al. Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 110, 14390–14395 (2013).

    Article  CAS  Google Scholar 

  12. Kojima, S. & Blair, D. F. The bacterial flagellar motor: structure and function of a complex molecular machine. Int. Rev. Cytol. 233, 93–134 (2004).

    Article  CAS  Google Scholar 

  13. Samatey, F. A. et al. Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431, 1062–1068 (2004).

    Article  CAS  Google Scholar 

  14. Zhao, X., Norris, S. J. & Liu, J. Molecular architecture of the bacterial flagellar motor in cells. Biochemistry 53, 4323–4333 (2014).

    Article  CAS  Google Scholar 

  15. Alegre-Cebollada, J., Badilla, C. L. & Fernández, J. M. Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes. J. Biol. Chem. 285, 11235–11242 (2010).

    Article  CAS  Google Scholar 

  16. Dierkes, L. E., Peebles, C. L., Firek, B. A., Hendrix, R. W. & Duda, R. L. Mutational analysis of a conserved glutamic acid required for self-catalyzed crosslinking of bacteriophage HK97 capsids. J. Virol. 83, 2088–2098 (2009).

    Article  CAS  Google Scholar 

  17. Ross, P. D. et al. Crosslinking renders bacteriophage HK97 capsid maturation irreversible and effects an essential stabilization. EMBO J. 24, 1352–1363 (2005).

    Article  CAS  Google Scholar 

  18. Duda, R. L. et al. Structure and energetics of encapsidated DNA in bacteriophage HK97 studied by scanning calorimetry and cryo-electron microscopy. J. Mol. Biol. 391, 471–483 (2009).

    Article  CAS  Google Scholar 

  19. Friedman, M. Lysinoalanine in food and in antimicrobial proteins. Adv. Exp. Med. Biol. 459, 145–159 (1999).

    Article  CAS  Google Scholar 

  20. Repka, L. M., Chekan, J. R., Nair, S. K. & van der Donk, W. A. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem. Rev. 117, 5457–5520 (2017).

    Article  CAS  Google Scholar 

  21. Huo, L., Ökesli, A. A., Zhao, M. & Van Der Donk, W. A. Insights into the biosynthesis of duramycin. Appl. Environ. Microbiol. 83, 2698–2714 (2017).

    Google Scholar 

  22. Ökesli, A., Cooper, L. E., Fogle, E. J. & van der Donk, W. A. Nine post-translational modifications during the biosynthesis of cinnamycin. J. Am. Chem. Soc. 133, 13753–13760 (2011).

    Article  Google Scholar 

  23. An, L. et al. Substrate-assisted enzymatic formation of lysinoalanine in duramycin. Nat. Chem. Biol. 14, 928–933 (2018).

    Article  CAS  Google Scholar 

  24. Miller, K. A. et al. Initial characterization of the FlgE hook high molecular weight complex of Borrelia burgdorferi. PLoS ONE 9, e98338 (2014).

    Article  Google Scholar 

  25. Lukszo, J., Patterson, D., Albericio, F. & Kates, S. A. 3-(1-Piperidinyl)alanine formation during the preparation of C-terminal cysteine peptides with the Fmoc/t-Bu strategy. Lett. Pept. Sci. 3, 157–166 (1996).

    Article  CAS  Google Scholar 

  26. Imada, K. Bacterial flagellar axial structure and its construction. Biophys. Rev. 10, 559–570 (2018).

    Article  CAS  Google Scholar 

  27. Homma, M., DeRosier, D. J. & Macnab, R. M. Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J. Mol. Biol. 213, 819–832 (1990).

    Article  CAS  Google Scholar 

  28. Moriya, N., Minamino, T., Hughes, K. T., Macnab, R. M. & Namba, K. The type III flagellar export specificity switch is dependent on flik ruler and a molecular clock. J. Mol. Biol. 359, 466–477 (2006).

    Article  CAS  Google Scholar 

  29. Moriya, N. et al. Role of the Dc domain of the bacterial hook protein FlgE in hook assembly and function. Biophysics 9, 63–72 (2013).

    Article  CAS  Google Scholar 

  30. Fujii, T., Kato, T. & Namba, K. Specific arrangement of alpha-helical coiled coils in the core domain of the bacterial flagellar hook for the universal joint function. Structure 17, 1485–1493 (2009).

    Article  CAS  Google Scholar 

  31. Matsunami, H., Barker, C. S., Yoon, Y.-H., Wolf, M. & Samatey, F. A. Complete structure of the bacterial flagellar hook reveals extensive set of stabilizing interactions. Nat. Commun. 7, 13425 (2016).

    Article  CAS  Google Scholar 

  32. Yoon, Y.-H. et al. Structural insights into bacterial flagellar hooks similarities and specificities. Sci. Rep. 6, 35552 (2016).

    Article  CAS  Google Scholar 

  33. Grabarek, Z. & Gergely, J. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185, 131–135 (1990).

    Article  CAS  Google Scholar 

  34. Brennan, D. F. & Barford, D. Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases. Trends Biochem. Sci. 34, 108–114 (2009).

    Article  CAS  Google Scholar 

  35. Zhou, G., Wang, H., Ma, Y., Chen, X. & An, N. B. D. fluorophore-based colorimetric and fluorescent chemosensor for hydrogen sulfide and its application for bioimaging. Tetrahedron 69, 867–870 (2013).

    Article  CAS  Google Scholar 

  36. Lynch, M. J. & Crane, B. R. Design, validation, and application of an enzyme coupled hydrogen sulfide detection assay. Biochemistry 59, 474–483 (2019).

    Article  Google Scholar 

  37. Kido, Y., Yoon, Y. H. & Samatey, F. A. Crystallization of a 79 kDa fragment of the hook protein FlgE from Campylobacter jejuni. Acta Crystallogr. Sect. F. 67, 1653–1657 (2011).

    Article  CAS  Google Scholar 

  38. Chalker, J. M. et al. Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem. Sci. 2, 1666 (2011).

    Article  CAS  Google Scholar 

  39. Galan, S. R. G. et al. Post-translational site-selective protein backbone α-deuteration. Nat. Chem. Biol. 14, 955–963 (2018).

    Article  CAS  Google Scholar 

  40. Shaikh, T. R. et al. A partial atomic structure for the flagellar hook of Salmonella typhimurium. Proc. Natl Acad. Sci. USA 102, 1023–1028 (2005).

    Article  CAS  Google Scholar 

  41. Bharadwaj, K. C. Acryl activation by intramolecular hydrogen bond: Morita Baylis Hillman reaction of acrylamide with broad substrate scope. Chem. Sel. 2, 5384–5389 (2017).

    CAS  Google Scholar 

  42. Chevance, F. F. V. & Hughes, K. T. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008).

    Article  CAS  Google Scholar 

  43. Glavas, S. & Tanner, M. E. Catalytic acid/base residues of glutamate racemase. Biochemistry 38, 4106–4113 (1999).

    Article  CAS  Google Scholar 

  44. Roberts, M. C., Chung, W. O. & Roe, D. E. Characterization of tetracycline and erythromycin resistance determinants in Treponema denticola. Antimicrob. Agents Chemother. 40, 1690–1694 (1996).

    Article  CAS  Google Scholar 

  45. Mitjà, O. et al. Re-emergence of yaws after single mass azithromycin treatment followed by targeted treatment: a longitudinal study. Lancet 391, 1599–1607 (2018).

    Article  Google Scholar 

  46. Nikolaidis, I., Favini-Stabile, S. & Dessen, A. Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci. 23, 243–259 (2014).

    Article  CAS  Google Scholar 

  47. Bernardes, G. J. L., Chalker, J. M., Errey, J. C. & Davis, B. G. Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. J. Am. Chem. Soc. 130, 5052–5053 (2008).

    Article  CAS  Google Scholar 

  48. Dadová, J., Galan, S. R. & Davis, B. G. Synthesis of modified proteins via functionalization of dehydroalanine. Curr. Opin. Chem. Biol. 46, 71–81 (2018).

    Article  Google Scholar 

  49. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  50. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  51. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Cryst. 66, 486–501 (2010).

    CAS  Google Scholar 

  52. Emsley, P. et al. COOT: model-building tools for molecular graphics. Acta Crystallogr. Sect. D. 60, 2126–2132 (2004).

    Article  Google Scholar 

  53. The PyMOL Molecular Graphics System, V.2.0 (Schrödinger, LLC, 2019).

  54. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  55. Yang, Y., Thannhauser, T. W., Li, L. & Zhang, S. Development of an integrated approach for evaluation of 2-D gel image analysis: Impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow. Electrophoresis 28, 2080–2094 (2007).

    Article  CAS  Google Scholar 

  56. Thomas, C. J., Cleland, T. P., Zhang, S., Gundberg, C. M. & Vashishth, D. Identification and characterization of glycation adducts on osteocalcin. Anal. Biochem. 525, 46–53 (2017).

    Article  CAS  Google Scholar 

  57. Yang, Y., Anderson, E. & Zhang, S. Evaluation of six sample preparation procedures for qualitative and quantitative proteomics analysis of milk fat globule membrane. Electrophoresis 39, 2332–2339 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant no. R35 122535 (B.R.C.), the CBI Training grant nos. T32 GM008500 (M.J.L. and B.R.C.), NIH R01-DE023431 (N.C., M.M. and C.L.), AI078958 (C.L.) and NIH SIG grant no. 1S10 OD017992-01 (S.Z.). CHESS is supported by the NSF and NIH/NIGMS (no. DMR-1332208). MacCHESS is supported by NIH/NIGMS (no. GM-103485). Remote data collection was performed at the NE-CAT beamlines (no. GM124165) using an Eiger detector (OD021527) at the Advanced Photon Source (DE-AC02-06CH11357). The authors would like to thank H. Le for assistance with LC–MS experiments, A. Bilwes-Crane for editing the manuscript, the Cornell Proteomic and MS Facility for providing the mass spectrometry data and E. Anderson and R. Bahwal for technical assistance with MS sample preparation, data acquisition and analysis.

Author information

Authors and Affiliations

Authors

Contributions

B.R.C., M.J.L., N.W.C., C.L. and M.M. conceived the study. K.Z. generated an initial construct encoding for Td FlgE. M.J.L. performed the crystallography, X-ray diffraction experiments and associated structural analysis, site-directed mutagenesis, EDC crosslinking and Lal crosslinking SDS–PAGE assays. M.J. carried out preliminary work that identified NEM and DTNB as FlgE crosslink enhancers. M.J.L. prepared samples for MS. S.Z. performed MS data acquisition and associated samples analysis. M.J.L. and B.R.C. prepared figures. M.J.L., B.R.C. and N.W.C. wrote the manuscript. B.R.C., N.W.C., M.J.L., C.L., M.J., M.M. and S.Z. edited the manuscript. B.R.C., N.W.C., M.M. and C.L. supervised the study.

Corresponding author

Correspondence to Brian R. Crane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplemental Figs. 1–13 and Supplemental Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynch, M.J., Miller, M., James, M. et al. Structure and chemistry of lysinoalanine crosslinking in the spirochaete flagella hook. Nat Chem Biol 15, 959–965 (2019). https://doi.org/10.1038/s41589-019-0341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0341-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing