Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Convergent biosynthetic transformations to a bacterial specialized metabolite

Abstract

Microbes produce specialized metabolites to thrive in their natural habitats. However, it is rare that a given specialized metabolite is biosynthesized via pathways with distinct intermediates and enzymes. Here, we show that the core assembly mechanism of the antibiotic indolmycin in marine gram-negative Pseudoalteromonas luteoviolacea is distinct from its counterpart in terrestrial gram-positive Streptomyces species, with a molecule that is a shunt product in the Streptomyces pathway employed as a biosynthetic substrate for a novel metal-independent N-demethylindolmycin synthase in the P. luteoviolacea pathway. To provide insight into this reaction, we solved the 1.5 Å resolution structure in complex with product and identified the active site residues. Guided by our biosynthetic insights, we then engineered the Streptomyces indolmycin producer for titer improvement. This study provides a paradigm for understanding how two unique routes to a microbial specialized metabolite can emerge from convergent biosynthetic transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Indolmycin biosynthesis and gene clusters.
Fig. 2: In vitro analysis of indolmycin biosynthesis in P. luteoviolacea.
Fig. 3: Crystal structure of PluN2 in complex with 3.
Fig. 4: Proposed mechanism of PluN2 and engineered pathway to indolmycin.

Similar content being viewed by others

Data availability

The structure of PluN2–3 has been deposited to the Protein Data Bank with accession number 6P29. All other data generated or analyzed in this study are available within the article and the Supplementary Information.

References

  1. Dixon, R. A. Natural products and plant disease resistance. Nature 411, 843–847 (2001).

    Article  CAS  Google Scholar 

  2. Gershenzon, J. & Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408–414 (2007).

    Article  CAS  Google Scholar 

  3. Traxler, M. F. & Kolter, R. Natural products in soil microbe interactions and evolution. Nat. Prod. Rep. 32, 956–970 (2015).

    Article  CAS  Google Scholar 

  4. Fischbach, M. A., Walsh, C. T. & Clardy, J. The evolution of gene collectives: how natural selection drives chemical innovation. Proc. Natl Acad. Sci. USA 105, 4601–4608 (2008).

    Article  CAS  Google Scholar 

  5. Thibodeaux, C. J., Melançon, C. E. & Liu, H. Unusual sugar biosynthesis and natural product glycodiversification. Nature 446, 1008–1016 (2007).

    Article  CAS  Google Scholar 

  6. Jensen, P. R. Natural products and the gene cluster revolution. Trends Microbiol. 24, 968–977 (2016).

    Article  CAS  Google Scholar 

  7. Denoeud, F. et al. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345, 1181–1184 (2014).

    Article  CAS  Google Scholar 

  8. Pichersky, E. & Lewinsohn, E. Convergent evolution in plant specialized metabolism. Annu. Rev. Plant Biol. 62, 549–566 (2011).

    Article  CAS  Google Scholar 

  9. Nett, R. S. et al. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nat. Chem. Biol. 13, 69–74 (2017).

    Article  CAS  Google Scholar 

  10. Jensen, N. B. et al. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nat. Commun. 2, 273 (2011).

    Article  Google Scholar 

  11. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  Google Scholar 

  12. Williams, T. L., Yin, Y. W. & Carter, C. W. Selective inhibition of bacterial tryptophanyl-tRNA synthetases by indolmycin is mechanism-based. J. Biol. Chem. 291, 255–265 (2016).

    Article  CAS  Google Scholar 

  13. Kanamaru, T. et al. In vitro and in vivo antibacterial activities of TAK-083, an agent for treatment of Helicobacter pylori infection. Antimicrob. Agents Chemother. 45, 2455–2459 (2001).

    Article  CAS  Google Scholar 

  14. Hurdle, J. G., O’Neill, A. J. & Chopra, I. Anti-staphylococcal activity of indolmycin, a potential topical agent for control of staphylococcal infections. J. Antimicrob. Chemother. 54, 549–552 (2004).

    Article  CAS  Google Scholar 

  15. Preobrazhenskaya, M. N. et al. Total synthesis of antibiotic indolmycin and its stereoisomers. Tetrahedron 24, 6131–6143 (1968).

    Article  CAS  Google Scholar 

  16. Takeda, T. & Mukaiyama, T. Asymmetric total synthesis of indolmycin. Chem. Lett. 9, 163–166 (1980).

    Article  Google Scholar 

  17. Shue, Y.-K. Total synthesis of (±) indolmycin. Tetrahedron Lett. 37, 6447–6448 (1996).

    Article  CAS  Google Scholar 

  18. Du, Y.-L., Alkhalaf, L. M. & Ryan, K. S. In vitro reconstitution of indolmycin biosynthesis reveals the molecular basis of oxazolinone assembly. Proc. Natl Acad. Sci. USA 112, 2717–2722 (2015).

    Article  CAS  Google Scholar 

  19. Du, Y.-L. et al. A pyridoxal phosphate–dependent enzyme that oxidizes an unactivated carbon-carbon bond. Nat. Chem. Biol. 12, 194–199 (2016).

    Article  CAS  Google Scholar 

  20. Maansson, M. et al. An integrated metabolomic and genomic mining workflow to uncover the biosynthetic potential of bacteria. mSystems 1, e00028–15 (2016).

    Article  Google Scholar 

  21. He, P. & Moran, G. R. Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily. J. Inorg. Biochem. 105, 1259–1272 (2011).

    Article  CAS  Google Scholar 

  22. Maruyama, M. et al. Crystal structures of the transposon Tn5-carried bleomycin resistance determinant uncomplexed and complexed with bleomycin. J. Biol. Chem. 276, 9992–9999 (2001).

    Article  CAS  Google Scholar 

  23. Chang, C.-Y. et al. Resistance to enediyne antitumor antibiotics by sequestration. Cell Chem. Biol. 25, 1075–1085.e4 (2018).

    Article  Google Scholar 

  24. Zee, L., Hornemann, U. & Floss, H. G. Further studies on the biosynthesis of the antibiotic indolmycin in Streptomyces griseus. Biochem. Physiol. Pflanz. 168, 19–25 (1975).

    Article  CAS  Google Scholar 

  25. Zou, Y. et al. Stereospecific biosynthesis of β-methyltryptophan from l-tryptophan features a stereochemical switch. Angew. Chem. Int. Ed. 52, 12951–12955 (2013).

    Article  CAS  Google Scholar 

  26. Borgman, P., Lopez, R. D. & Lane, A. L. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases. Org. Biomol. Chem. 17, 2305–2314 (2019).

    Article  CAS  Google Scholar 

  27. Magnard, J.-L. et al. Biosynthesis of monoterpene scent compounds in roses. Science 349, 81–83 (2015).

    Article  CAS  Google Scholar 

  28. Finefield, J. M., Frisvad, J. C., Sherman, D. H. & Williams, R. M. Fungal origins of the bicyclo[2.2.2]diazaoctane ring system of prenylated indole alkaloids. J. Nat. Prod. 75, 812–833 (2012).

    Article  CAS  Google Scholar 

  29. Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010 (2011).

    Article  CAS  Google Scholar 

  30. Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D. 67, 271–281 (2011).

    Article  CAS  Google Scholar 

  31. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D. 69, 1204–1214 (2013).

    Article  CAS  Google Scholar 

  32. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D. 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  33. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  34. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. 60, 2126–2132 (2004).

    Article  Google Scholar 

  35. Afonine, P. V. et al. Joint X-ray and neutron refinement with phenix.refine. Acta Crystallogr. D. 66, 1153–1163 (2010).

    Article  CAS  Google Scholar 

  36. Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D. 65, 1074–1080 (2009).

    Article  CAS  Google Scholar 

  37. Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Article  CAS  Google Scholar 

  38. Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl Acad. Sci. USA 100, 1541–1546 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. He for helpful discussion, S. Yao for metabolic analysis and Z. Zhou for tblastx analysis. This work was supported by funding from the Natural Sciences and Engineering Research Council of Canada (grant no. RGPIN-2016-03778), the Alfred P. Sloan Foundation (grant no. FG-20166503), the Canadian Institutes of Health Research (grant nos. FDN-148381 and 201312MSH-322191-209186), the Michael Smith Foundation for Health Research (grant no. 16776), the National Natural Science Foundation of China (grant no. 31872625) and the Zhejiang Provincial Science Foundation for Distinguished Young Scholars (grant no. LR19C010001). Data collection for the crystallographic research in this paper was performed using beamline 08ID-1 at the Canadian Light Source.

Author information

Authors and Affiliations

Authors

Contributions

Y.-L.D. designed the study, performed biochemical characterization and structural work, and wrote the manuscript. M.A.H. performed sequence-similarity network analysis and participated in structural work. G.Z. determined steady-state kinetic parameters and conducted pathway engineering. K.S.R. designed the study and wrote the manuscript.

Corresponding authors

Correspondence to Yi-Ling Du or Katherine S. Ryan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2 and Supplementary Figs. 1–13

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, YL., Higgins, M.A., Zhao, G. et al. Convergent biosynthetic transformations to a bacterial specialized metabolite. Nat Chem Biol 15, 1043–1048 (2019). https://doi.org/10.1038/s41589-019-0331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0331-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing