Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

2-Hydroxyacyl-CoA lyase catalyzes acyloin condensation for one-carbon bioconversion

Abstract

Despite the potential of biotechnological processes for one-carbon (C1) bioconversion, efficient biocatalysts required for their implementation are yet to be developed. To address intrinsic limitations of native C1 biocatalysts, here we report that 2-hydroxyacyl CoA lyase (HACL), an enzyme involved in mammalian α-oxidation, catalyzes the ligation of carbonyl-containing molecules of different chain lengths with formyl-coenzyme A (CoA) to produce C1-elongated 2-hydroxyacyl-CoAs. We discovered and characterized a prokaryotic variant of HACL and identified critical residues for this newfound activity, including those supporting the hypothesized thiamine pyrophosphate-dependent acyloin condensation mechanism. The use of formyl-CoA as a C1 donor provides kinetic advantages and enables C1 bioconversion to multi-carbon products, demonstrated here by engineering an Escherichia coli whole-cell biotransformation system for the synthesis of glycolate and 2-hydroxyisobutyrate from formaldehyde and formaldehyde plus acetone, respectively. Our work establishes a new approach for C1 bioconversion and the potential for HACL-based pathways to support synthetic methylotrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Known and hypothesized reactions catalyzed by HACL.
Fig. 2: Implementation of HACL-based C1 biocatalysis.
Fig. 3: Homology-guided site-directed mutagenesis of RuHACL.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included in the paper and its supplementary information files.

References

  1. Peralta-Yahya, P. P., Zhang, F., del Cardayre, S. B. & Keasling, J. D. Microbial engineering for the production of advanced biofuels. Nature 488, 320–328 (2012).

    Article  CAS  Google Scholar 

  2. Casini, A. et al. A pressure test to make 10 molecules in 90 days: external evaluation of methods to engineer biology. J. Am. Chem. Soc. 140, 4302–4316 (2018).

    Article  CAS  Google Scholar 

  3. Claassens, N. J., Sousa, D. Z., Dos Santos, V. A. P. M., De Vos, W. M. & Van Der Oost, J. Harnessing the power of microbial autotrophy. Nat. Rev. Microbiol. 14, 692–706 (2016).

    Article  CAS  Google Scholar 

  4. Bennett, R. K., Steinberg, L. M., Chen, W. & Papoutsakis, E. T. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr. Opin. Biotechnol. 50, 81–93 (2018).

    Article  CAS  Google Scholar 

  5. Antonovsky, N., Gleizer, S. & Milo, R. Engineering carbon fixation in E. coli: from heterologous RuBisCO expression to the Calvin–Benson–Bassham cycle. Curr. Opin. Biotechnol. 47, 83–91 (2017).

    Article  CAS  Google Scholar 

  6. Clomburg, J. M., Crumbley, A. M. & Gonzalez, R. Industrial biomanufacturing: the future of chemical production. Science 355, 1–10 (2017).

    Article  Google Scholar 

  7. Casteels, M., Foulon, V., Mannaerts, G. P. & Van Veldhoven, P. P. Alpha-oxidation of 3-methyl-substituted fatty acids and its thiamine dependence. Eur. J. Biochem. 270, 1619–1627 (2003).

    Article  CAS  Google Scholar 

  8. Foulon, V. et al. Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanoyl-CoA lyase: a revised pathway for the alpha-oxidation of straight chain fatty acids. J. Biol. Chem. 280, 9802–9812 (2005).

    Article  CAS  Google Scholar 

  9. Foulon, V. et al. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl-CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during alpha-oxidation of 3-methyl-branched fatty acids. Proc. Natl Acad. Sci. USA 96, 10039–10044 (1999).

    Article  CAS  Google Scholar 

  10. Müller, M. & Sprenger, G. A. in Thiamine: Catalytic Mechanisms in Normal and Disease States (eds Jordan, F. & Patel, M. S.) 82–84 (CRC Press, 2003).

  11. Dellomonaco, C., Clomburg, J. M., Miller, E. N. & Gonzalez, R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355–359 (2011).

    Article  CAS  Google Scholar 

  12. Cheong, S., Clomburg, J. M. & Gonzalez, R. Energy-and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat. Biotechnol. 34, 556–561 (2016).

    Article  CAS  Google Scholar 

  13. Jankowski, M. D., Henry, C. S., Broadbelt, L. J. & Hatzimanikatis, V. Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys. J. 95, 1487–1499 (2008).

    Article  CAS  Google Scholar 

  14. Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 42, D459–D471 (2014).

    Article  CAS  Google Scholar 

  15. Jansen, G. A. & Wanders, R. J. A. Alpha-oxidation. Biochim. Biophys. Acta 1763, 1403–1412 (2006).

    Article  CAS  Google Scholar 

  16. Croes, K., Casteels, M., Dieuaide-Noubhani, M., Mannaerts, G. P. & Van Veldhoven, P. P. Stereochemistry of the alpha-oxidation of 3-methyl-branched fatty acids in rat liver. J. Lipid Res. 40, 601–609 (1999).

    CAS  PubMed  Google Scholar 

  17. Ring, M. W., Schwär, G. & Bode, H. B. Biosynthesis of 2-hydroxy and iso-even fatty acids is connected to sphingolipid formation in myxobacteria. Chem. Bio. Chem. 10, 2003–2010 (2009).

    Article  CAS  Google Scholar 

  18. Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R. & Giovannoni, S. J. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. mBio. 8, e00413–e00417 (2017).

    Article  CAS  Google Scholar 

  19. Madden, T. T. The BLAST sequence analysis tool. NCBI Handbook 2nd edn, 1–12 (eds. Hoeppner, M. and Ostell, J.; National Library of Medicine, 2013); https://www.unmc.edu/bsbc/docs/NCBI_blast.pdf

  20. Lung, H. Y., Baetz, A. L. & Peck, A. B. Molecular cloning, DNA sequence, and gene expression of the oxalyl-coenzyme A decarboxylase gene, oxc, from the bacterium Oxalobacter formigenes. J. Bacteriol. 176, 2468–2472 (1994).

    Article  CAS  Google Scholar 

  21. Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    Article  CAS  Google Scholar 

  22. Schwander, T., von Borzyskowski, S., Burgener, L., Cortina, S. & Erb, N. S. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354, 900–904 (2016).

    Article  CAS  Google Scholar 

  23. Siegel, J. B. et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl Acad. Sci. USA 112, 3704–3709 (2015).

    CAS  PubMed  Google Scholar 

  24. Choi, Y. J. et al. Novel, versatile, and tightly regulated expression system for Escherichia coli strains. Appl. Environ. Microbiol. 76, 5058–5066 (2010).

    Article  CAS  Google Scholar 

  25. Rohwerder, T. & Müller, R. H. Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon. Microb. Cell Fact. 9, 1–10 (2010).

    Article  Google Scholar 

  26. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, gky427 (2018).

    Article  Google Scholar 

  27. Berthold, C. L. et al. Crystallographic snapshots of oxalyl-CoA decarboxylase give insights into catalysis by nonoxidative ThDP-dependent decarboxylases. Structure 15, 853–861 (2007).

    Article  CAS  Google Scholar 

  28. Sly, W. & Stadtman, E. Formyl coenzyme A, an intermediate in the formate-dependent decomposition of acetyl phosphate in Clostridium kluyveri. J. Biol. Chem. 238, 2632–2638 (1963).

    CAS  PubMed  Google Scholar 

  29. Müller, J. E. N. et al. Engineering Escherichia coli for methanol conversion. Metab. Eng. 28, 190–201 (2015).

    Article  Google Scholar 

  30. Bahmanpour, A. M., Hoadley, A. & Tanksale, A. Critical review and exergy analysis of formaldehyde production processes. Rev. Chem. Eng. 30, 583–604 (2014).

    Article  CAS  Google Scholar 

  31. Heim, L. E., Konnerth, H. & Prechtl, M. H. G. Future perspectives for formaldehyde: pathways for reductive synthesis and energy storage. Green Chem. 19, 2347–2355 (2017).

    Article  CAS  Google Scholar 

  32. Pereira, B. et al. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metab. Eng. 34, 80–87 (2016).

    Article  CAS  Google Scholar 

  33. Koivistoinen, O. M. et al. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microb. Cell Fact. 12, 82 (2013).

    Article  Google Scholar 

  34. Krakow, G., Barkulis, S. S. & Hayashi, J. A. Glyoxylic acid carboligase: an enzyme present in glycolate-grown Escherichia coli. J. Bacteriol. 81, 509–518 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory Press, 1972).

  36. Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81, 2506–2514 (2015).

    Article  CAS  Google Scholar 

  37. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  38. Fong, J. C. & Schulz, H. Short-chain and long-chain enoyl-CoA hydratases from pig heart muscle. Methods Enzymol. 71, 390–398 (1981).

    Article  CAS  Google Scholar 

  39. Parasaran, T. & Tarbell, D. S. Formic ethylcarbonic anhydride. J. Org. Chem. 29, 3422–3423 (1964).

    Article  CAS  Google Scholar 

  40. Taylor, D. C., Weber, N. & MacKenzie, S. L. in CRC Handbook of Chromatography. Analysis of Lipids (eds Mukherjee, K. D. & Weber, N.) (CRC Press, 1993).

  41. Severn, D. J., Johnson, M. E. & Olson, N. F. Determination of lactic acid in cheddar cheese and calcium lactate crystals. J. Dairy Sci. 69, 2027–2030 (2010).

    Article  Google Scholar 

  42. Neidhardt, F. C., Bloch, P. L. & Smith, D. F. Culture medium for enterobacteria. J. Bacteriol. 119, 736–747 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Papadopoulos, J. S. & Agarwala, R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23, 1073–1079 (2007).

    Article  CAS  Google Scholar 

  44. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    Article  CAS  Google Scholar 

  45. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Garg for assistance with protein purification methods and S. Cheong for assistance with genetic methods. This work was partially supported by a grant from the US National Science Foundation (no. CBET-1605999).

Author information

Authors and Affiliations

Authors

Contributions

R.G. conceptualized the research and supervised the project. A.C., J.M.C., S.Q. and R.G. designed the methodology. A.C. identified and characterized HACL variants and performed cell-free experiments. S.Q. modeled and analyzed the structure of RuHACL and designed mutations. J.M.C. performed whole-cell experiments. A.C. and S.Q. constructed E. coli strains. A.C., J.M.C. and S.Q. analyzed the data. A.C. and R.G. prepared the manuscript with feedback from all authors.

Corresponding author

Correspondence to Ramon Gonzalez.

Ethics declarations

Competing interests

A.C., J.M.C. and R.G. are co-inventors and assignees on a patent application (PCT/US2015/058121), which relates to the reported research. Correspondence and requests for materials should be addressed to ramongonzale@usf.edu.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1–3, Supplementary Figs. 1–11

Reporting Summary

Supplementary Dataset

RuHACLmodel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, A., Clomburg, J.M., Qian, S. et al. 2-Hydroxyacyl-CoA lyase catalyzes acyloin condensation for one-carbon bioconversion. Nat Chem Biol 15, 900–906 (2019). https://doi.org/10.1038/s41589-019-0328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0328-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research