Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A programmable DNA-origami platform for studying lipid transfer between bilayers

Abstract

Non-vesicular lipid transport between bilayers at membrane contact sites plays important physiological roles. Mechanistic insight into the action of lipid-transport proteins localized at these sites requires determination of the distance between bilayers at which this transport can occur. Here we developed DNA-origami nanostructures to organize size-defined liposomes at precise distances and used them to study lipid transfer by the synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain of extended synaptotagmin 1 (E-Syt1). Pairs of DNA-ring-templated donor and acceptor liposomes were docked through DNA pillars, which determined their distance. The SMP domain was anchored to donor liposomes via an unstructured linker, and lipid transfer was assessed via a Förster resonance energy transfer (FRET)-based assay. We show that lipid transfer can occur over distances that exceed the length of an SMP dimer, which is compatible with the shuttle model of lipid transport. The DNA nanostructures developed here can also be adapted to study other processes occurring where two membranes are closely apposed to each other.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNA nanostructures designed for this study.
Fig. 2: DNA-directed liposome formation and assembly.
Fig. 3: E-Syt1cyto clusters and mediates lipid transfer between DNA-origami-templated liposomes.
Fig. 4: The SMP domain of E-Syt1 alone does not cluster liposomes but transfers lipids between protein-tethered liposomes.
Fig. 5: SMP mediates lipid transfer between two liposomes within DNA-organized liposome dimers.
Fig. 6: Model for E-Syt1-mediated lipid transfer.

Similar content being viewed by others

Data availability

All raw data are available from the corresponding authors upon reasonable request.

References

  1. Saheki, Y. & De Camilli, P. Endoplasmic reticulum–plasma membrane contact sites. Annu. Rev. Biochem. 86, 659–684 (2017).

    Article  CAS  Google Scholar 

  2. Wu, H., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361, eaan5835 (2018).

    Article  Google Scholar 

  3. Wong, L. H., Gatta, A. T. & Levine, T. P. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat. Rev. Mol. Cell Biol. 20, 85–101 (2018).

    Article  Google Scholar 

  4. Stefan, C. J., Manford, A. G. & Emr, S. D. ER–PM connections: sites of information transfer and inter-organelle communication. Curr. Opin. Cell. Biol. 25, 434–442 (2013).

    Article  CAS  Google Scholar 

  5. AhYoung, A. P. et al. Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly. Proc. Natl Acad. Sci. USA 112, E3179–E3188 (2015).

    Article  CAS  Google Scholar 

  6. Jeong, H., Park, J., Jun, Y. & Lee, C. Crystal structures of Mmm1 and Mdm12–Mmm1 reveal mechanistic insight into phospholipid trafficking at ER–mitochondria contact sites. Proc. Natl Acad. Sci. USA 114, E9502–E9511 (2017).

    Article  CAS  Google Scholar 

  7. Kawano, S. et al. Structure–function insights into direct lipid transfer between membranes by Mmm1–Mdm12 of ERMES. J. Cell Biol. 217, 959–974 (2018).

    Article  CAS  Google Scholar 

  8. Kopec, K. O., Alva, V. & Lupas, A. N. Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics 26, 1927–1931 (2010).

    Article  CAS  Google Scholar 

  9. Lee, I. & Hong, W. Diverse membrane-associated proteins contain a novel SMP domain. FASEB J. 20, 202–206 (2006).

    Article  CAS  Google Scholar 

  10. Schauder, C. M. et al. Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 510, 552–555 (2014).

    Article  CAS  Google Scholar 

  11. Wong, L. H. & Levine, T. P. Tubular lipid binding proteins (TULIPs) growing everywhere. Biochim. Biophys. Acta Mol. Cell Res. 1864, 1439–1449 (2017).

    Article  CAS  Google Scholar 

  12. Lees, J. A. et al. Lipid transport by TMEM24 at ER–plasma membrane contacts regulates pulsatile insulin secretion. Science 355, eaah6171 (2017).

    Article  Google Scholar 

  13. Alva, V. & Lupas, A. N. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861, 913–923 (2016).

    Article  CAS  Google Scholar 

  14. Kornmann, B. et al. An ER–mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481 (2009).

    Article  CAS  Google Scholar 

  15. Liu, L. K., Choudhary, V., Toulmay, A. & Prinz, W. A. An inducible ER–Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J. Cell Biol. 216, 131–147 (2017).

    Article  CAS  Google Scholar 

  16. Toulmay, A. & Prinz, W. A. A conserved membrane-binding domain targets proteins to organelle contact sites. J. Cell Sci. 125, 49–58 (2012).

    Article  CAS  Google Scholar 

  17. Hirabayashi, Y. et al. ER–mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017).

    Article  CAS  Google Scholar 

  18. Min, S. W., Chang, W. P. & Sudhof, T. C. E-Syts, a family of membranous Ca2+-sensor proteins with multiple C2 domains. Proc. Natl Acad. Sci. USA 104, 3823–3828 (2007).

    Article  CAS  Google Scholar 

  19. Manford, A. G., Stefan, C. J., Yuan, H. L., Macgurn, J. A. & Emr, S. D. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev. Cell 23, 1129–1140 (2012).

    Article  CAS  Google Scholar 

  20. Giordano, F. et al. PI(4,5)P2-dependent and Ca2+-regulated ER–PM interactions mediated by the extended synaptotagmins. Cell 153, 1494–1509 (2013).

    Article  CAS  Google Scholar 

  21. Chang, C. L. et al. Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum–plasma membrane junctions. Cell Rep. 5, 813–825 (2013).

    Article  Google Scholar 

  22. Fernandez-Busnadiego, R., Saheki, Y. & De Camilli, P. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum–plasma membrane contact sites. Proc. Natl Acad. Sci. USA 112, E2004–E2013 (2015).

    Article  CAS  Google Scholar 

  23. Idevall-Hagren, O., Lu, A., Xie, B. & De Camilli, P. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER–plasma membrane tethering. EMBO J. 34, 2291–2305 (2015).

    Article  CAS  Google Scholar 

  24. Bian, X., Saheki, Y. & De Camilli, P. Ca2+ releases E-Syt1 autoinhibition to couple ER–plasma membrane tethering with lipid transport. EMBO J. 37, 219–234 (2018).

    Article  CAS  Google Scholar 

  25. Saheki, Y. et al. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat. Cell Biol. 18, 504–515 (2016).

    Article  CAS  Google Scholar 

  26. Yu, H. et al. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites. Proc. Natl Acad. Sci. USA 113, 4362–4367 (2016).

    Article  CAS  Google Scholar 

  27. Orci, L. et al. From the cover: STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 106, 19358–19362 (2009).

    Article  CAS  Google Scholar 

  28. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  29. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  30. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  Google Scholar 

  31. Grome, M. W., Zhang, Z., Pincet, F. & Lin, C. Vesicle tubulation with self-assembling DNA nanosprings. Angew. Chem. Int. Ed. Engl. 57, 5330–5334 (2018).

    Article  CAS  Google Scholar 

  32. Xu, W. et al. A programmable DNA origami platform to organize SNAREs for membrane fusion. J. Am. Chem. Soc. 138, 4439–4447 (2016).

    Article  CAS  Google Scholar 

  33. Yang, Y. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8, 476–483 (2016).

    Article  CAS  Google Scholar 

  34. Zhang, Z., Yang, Y., Pincet, F., Llaguno, M. C. & Lin, C. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem. 9, 653–659 (2017).

    Article  CAS  Google Scholar 

  35. Chan, Y. H., van Lengerich, B. & Boxer, S. G. Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc. Natl Acad. Sci. USA 106, 979–984 (2009).

    Article  CAS  Google Scholar 

  36. Franquelim, H. G., Khmelinskaia, A., Sobczak, J. P., Dietz, H. & Schwille, P. Membrane sculpting by curved DNA origami scaffolds. Nat. Commun. 9, 811 (2018).

    Article  Google Scholar 

  37. Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

    Article  CAS  Google Scholar 

  38. Beales, P. A. & Vanderlick, T. K. Specific binding of different vesicle populations by the hybridization of membrane-anchored DNA. J. Phys. Chem. A 111, 12372–12380 (2007).

    Article  CAS  Google Scholar 

  39. Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 3625–3639 (2018).

    Article  CAS  Google Scholar 

  40. Valverde, D. P. et al. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218, 1787–1798 (2019).

    Article  Google Scholar 

  41. Lin, C., Perrault, S. D., Kwak, M., Graf, F. & Shih, W. M. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 41, e40 (2013).

    Article  CAS  Google Scholar 

  42. Sun, E. W. et al. Lipid transporter TMEM24/C2CD2L is a Ca2+-regulated component of ER–plasma membrane contacts in mammalian neurons. Proc. Natl Acad. Sci. USA 116, 5775–5784 (2019).

    Article  CAS  Google Scholar 

  43. Xu, W., Wang, J., Rothman, J. E. & Pincet, F. Accelerating SNARE-mediated membrane fusion by DNA–lipid tethers. Angew. Chem. Int. Ed. Engl. 54, 14388–14392 (2015).

    Article  CAS  Google Scholar 

  44. Ma, L. et al. Single-molecule force spectroscopy of protein–membrane interactions. eLife 6, e30493 (2017).

    Article  Google Scholar 

  45. Xu, J. et al. Structure and Ca2+-binding properties of the tandem C2 domains of E-Syt2. Structure 22, 269–280 (2014).

    Article  CAS  Google Scholar 

  46. Stefan, C. J. et al. Osh proteins regulate phosphoinositide metabolism at ER–plasma membrane contact sites. Cell 144, 389–401 (2011).

    Article  CAS  Google Scholar 

  47. Eden, E. R., White, I. J., Tsapara, A. & Futter, C. E. Membrane contacts between endosomes and ER provide sites for PTP1B–epidermal growth factor receptor interaction. Nat. Cell Biol. 12, 267–272 (2010).

    Article  CAS  Google Scholar 

  48. Kauert, D. J., Kurth, T., Liedl, T. & Seidel, R. Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett. 11, 5558–5563 (2011).

    Article  CAS  Google Scholar 

  49. Liedl, T., Hogberg, B., Tytell, J., Ingber, D. E. & Shih, W. M. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat. Nanotechnol. 5, 520–524 (2010).

    Article  CAS  Google Scholar 

  50. Castro, C. E., Su, H. J., Marras, A. E., Zhou, L. & Johnson, J. Mechanical design of DNA nanostructures. Nanoscale 7, 5913–5921 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Cai for discussion. This work was supported by NIH grants NS036251 and DA018343, the HHMI and the Kavli Foundation to P.D.C.; an NIH Director’s New Innovator Award (GM114830) and a Yale University faculty startup fund to C.L.; a Human Frontier Science Program Long-term Fellowship to X.B.; and an Agency for Science, Technology and Research Graduate Scholarship (Singapore) to Q.X.

Author information

Authors and Affiliations

Authors

Contributions

X.B. designed and performed liposome tethering and lipid-transfer assays, and prepared DNA-origami-organized liposomes. Z.Z. designed the DNA-origami structures, prepared DNA-origami-organized liposomes and performed EM studies. Q.X. performed EM studies. X.B., Z.Z., P.D.C. and C.L. initiated the project, analyzed and interpreted data, and wrote the manuscript.

Corresponding authors

Correspondence to Pietro De Camilli or Chenxiang Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, X., Zhang, Z., Xiong, Q. et al. A programmable DNA-origami platform for studying lipid transfer between bilayers. Nat Chem Biol 15, 830–837 (2019). https://doi.org/10.1038/s41589-019-0325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0325-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing