Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specificity for latent C termini links the E3 ubiquitin ligase CHIP to caspases

Abstract

Protein–protein interactions between E3 ubiquitin ligases and protein termini help shape the proteome. These interactions are sensitive to proteolysis, which alters the ensemble of cellular N and C termini. Here we describe a mechanism wherein caspase activity reveals latent C termini that are then recognized by the E3 ubiquitin ligase CHIP. Using expanded knowledge of CHIP’s binding specificity, we predicted hundreds of putative interactions arising from caspase activity. Subsequent validation experiments confirmed that CHIP binds the latent C termini at tauD421 and caspase-6D179. CHIP binding to tauD421, but not tauFL, promoted its ubiquitination, while binding to caspase-6D179 mediated ubiquitin-independent inhibition. Given that caspase activity generates tauD421 in Alzheimer’s disease (AD), these results suggested a concise model for CHIP regulation of tau homeostasis. Indeed, we find that loss of CHIP expression in AD coincides with the accumulation of tauD421 and caspase-6D179. These results illustrate an unanticipated link between caspases and protein homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CHIP function is rooted in the recognition of C termini.
Fig. 2: Structural basis for CHIP TPR domain specificity.
Fig. 3: Proteome-wide prediction of CHIP TPR interactions with C termini.
Fig. 4: TauD421 specifically recruits CHIP.
Fig. 5: CHIP specifically binds and inhibits mature caspase-6.
Fig. 6: CHIP interactions at latent C termini suggest a role in the progression of AD.

Similar content being viewed by others

Data availability

All structural data has been deposited in the PDB (PDB ID 6EFK and 6NSV). All predicted CHIP binders and relevant scores are provided in the Supplementary Information. Additional data supporting the findings of this manuscript are available from the corresponding author upon reasonable request.

References

  1. Dougan, D. A., Micevski, D. & Truscott, K. N. The N-end rule pathway: From recognition by N-recognins, to destruction by AAA+ proteases. Biochim. Biophys. Acta—Mol. Cell Res. 1823, 83–91 (2012).

    Article  CAS  Google Scholar 

  2. Tonikian, R. et al. A specificity map for the PDZ domain family. PLoS Biol. 6, 2043–2059 (2008).

    Article  CAS  Google Scholar 

  3. Dong, C. et al. Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway article. Nat. Chem. Biol. 14, 466–473 (2018).

    Article  CAS  Google Scholar 

  4. Zhang, C. et al. High-resolution crystal structure of human protease-activated receptor 1. Nature 492, 387–392 (2012).

    Article  CAS  Google Scholar 

  5. Saelens, X. et al. Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861–2874 (2004).

    Article  CAS  Google Scholar 

  6. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    Article  CAS  Google Scholar 

  7. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  Google Scholar 

  8. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  Google Scholar 

  9. Chen, S.-J., Wu, X., Wadas, B., Oh, J.-H. & Varshavsky, A. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355, eaal3655 (2017).

    Article  Google Scholar 

  10. Kim, H. K. et al. The N-terminal methionine of cellular proteins as a degradation signal. Cell 156, 158–169 (2014).

    Article  CAS  Google Scholar 

  11. Varshavsky, A. The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345 (2011).

    Article  CAS  Google Scholar 

  12. Koren, I. et al. The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell 173, 1622–1635 (2018).

    Article  CAS  Google Scholar 

  13. Lin, H. et al. C-terminal end-directed protein elimination by CRL2 ubiquitin ligases. Mol. Cell 70, 602–613.e3 (2018).

    Article  CAS  Google Scholar 

  14. Scott, F. L. et al. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionary conserved mechanism of IAPs. EMBO J. 24, 645–655 (2005).

    Article  CAS  Google Scholar 

  15. Saita, S. et al. PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat. Cell Biol. 19, 318–328 (2017).

    Article  CAS  Google Scholar 

  16. Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008–1012 (2000).

    Article  CAS  Google Scholar 

  17. Ballinger, C. A. et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 19, 4535–4545 (1999).

    Article  CAS  Google Scholar 

  18. Jiang, J. et al. CHIP is a U-box-dependent E3 ubiquitin ligase. J. Biol. Chem. 276, 42938–42944 (2001).

    Article  CAS  Google Scholar 

  19. Zhang, M. et al. Chaperoned ubiquitylation—crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 653–659 (2005).

    Article  Google Scholar 

  20. Qian, S. B., McDonough, H., Boellmann, F., Cyr, D. M. & Patterson, C. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440, 551–555 (2006).

    Article  CAS  Google Scholar 

  21. Rodina, A. et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538, 397–401 (2016).

    Article  CAS  Google Scholar 

  22. Taipale, M. et al. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158, 434–448 (2014).

    Article  CAS  Google Scholar 

  23. Wang, L. et al. Molecular mechanism of the negative regulation of Smad1/5 protein by carboxyl terminus of Hsc70-interacting protein (CHIP). J. Biol. Chem. 286, 15883–15894 (2011).

    Article  CAS  Google Scholar 

  24. Assimon, V. A., Southworth, D. R. & Gestwicki, J. E. Specific binding of tetratricopeptide repeat proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) is regulated by affinity and phosphorylation. Biochemistry 54, 7120–7131 (2015).

    Article  CAS  Google Scholar 

  25. Choe, Y. et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 281, 12824–12832 (2006).

    Article  CAS  Google Scholar 

  26. Brinker, A. et al. Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70·Hop·Hsp90 complexes. J. Biol. Chem. 277, 19265–19275 (2002).

    Article  CAS  Google Scholar 

  27. Scheufler, C. et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199–210 (2000).

    Article  CAS  Google Scholar 

  28. Kellogg, E. H., Leaver-Fay, A. & Baker, D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins Struct. Funct. Bioinforma 79, 830–838 (2011).

    Article  CAS  Google Scholar 

  29. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-l fJ processing in monocytes. Nature 356, 768–774 (1992).

    Article  CAS  Google Scholar 

  30. Julien, O. & Wells, J. A. Caspases and their substrates. Cell Death Differ. 24, 1380–1389 (2017).

    Article  CAS  Google Scholar 

  31. Crawford, E. D. et al. The DegraBase: a database of proteolysis in healthy and apoptotic human cells. Mol. Cell. Proteomics 12, 813–824 (2012).

    Article  Google Scholar 

  32. Barkan, D. T. et al. Prediction of protease substrates using sequence and structure features. Bioinformatics 26, 1714–1722 (2010).

    Article  CAS  Google Scholar 

  33. Stennicke, H. R. & Salvesen, G. S. Caspases—controlling intracellular signals by protease zymogen activation. Biochim. Biophys. Acta—Protein Struct. Mol. Enzymol. 1477, 299–306 (2000).

    Article  CAS  Google Scholar 

  34. Rissman, R. A. et al. Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J. Clin. Invest. 114, 121–130 (2004).

    Article  CAS  Google Scholar 

  35. Guo, H. et al. Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am. J. Pathol. 165, 523–531 (2004).

    Article  CAS  Google Scholar 

  36. Theofilas, P. et al. Probing the correlation of neuronal loss, neuro fibrillary tangles, and cell death markers across the Alzheimer’s disease Braak stages: a quantitative study in humans. Neurobiol. Aging 61, 1–12 (2018).

    Article  Google Scholar 

  37. Dolan, P. J. & Johnson, G. V. W. A caspase cleaved form of tau is preferentially degraded through the autophagy pathway. J. Biol. Chem. 285, 21978–21987 (2010).

    Article  CAS  Google Scholar 

  38. Saidi, L.-J. et al. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes. J. Alzheimer’s Dis. 44, 937–947 (2015).

    Article  CAS  Google Scholar 

  39. Dickey, C. A. et al. Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J. Neurosci. 26, 6985–6996 (2006).

    Article  CAS  Google Scholar 

  40. Kellogg, E. H. et al. Near-atomic model of microtubule-tau interactions. Science 360, 1242–1246 (2018).

    Article  CAS  Google Scholar 

  41. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).

    Article  CAS  Google Scholar 

  42. Morris, M. et al. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat. Neurosci. 18, 1183–1189 (2015).

    Article  CAS  Google Scholar 

  43. Quinn, J. P., Corbett, N. J., Kellett, K. A. B. & Hooper, N. M. Tau proteolysis in the pathogenesis of tauopathies: neurotoxic fragments and novel biomarkers. J. Alzheimer’s Dis. 63, 1–21 (2018).

    Article  Google Scholar 

  44. Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).

    Article  CAS  Google Scholar 

  45. Braak, H., Braak, E. & Bohl, J. Staging of Alzheimer-related cortical destruction. Eur. Neurol. 33, 403–408 (1993).

    Article  CAS  Google Scholar 

  46. J.A., M. et al. Neuropathological and transcriptomic characteristics of the aged brain. eLife 6, 1–26 (2017).

    Google Scholar 

  47. Riedl, S. J. & Salvesen, G. S. The apoptosome: signalling platform of cell death. Nat. Rev. Mol. Cell Biol. 8, 405–413 (2007).

    Article  CAS  Google Scholar 

  48. Klaiman, G., Champagne, N. & Leblanc, A. C. Self-activation of Caspase-6 in vitro and in vivo: Caspase-6 activation does not induce cell death in HEK293T cells. Biochem Biophys. Acta 1793, 592–601 (2009).

    Article  CAS  Google Scholar 

  49. Dagbay, K. B. & Hardy, J. A. Multiple proteolytic events in caspase-6 self-activation impact conformations of discrete structural regions. Proc. Natl Acad. Sci. USA 114, E7977–E7986 (2017).

    Article  CAS  Google Scholar 

  50. Julien, O. et al. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc. Natl Acad. Sci. USA 113, E2001–E2010 (2016).

    Article  CAS  Google Scholar 

  51. Nikolovska-Coleska, Z. et al. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal. Biochem. 332, 261–273 (2004).

    Article  CAS  Google Scholar 

  52. Winter, G. Xia2: An expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  53. Long, F., Vagin, A. A., Young, P. & Murshudov, G. N. BALBES: a molecular-replacement pipeline. Acta Crystallogr. Sect. D. 64, 125–132 (2007).

    Article  Google Scholar 

  54. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  55. Grinberg, L. T. et al. Brain bank of the Brazilian aging brain study group—a milestone reached and more than 1,600 collected brains. Cell Tissue Bank. 8, 151–162 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work is dedicated to R. Raines on the occasion of his 60th birthday. This work was supported by grants from the Tau Consortium and NIH no. R01059690 (to J.E.G.), nos. P41CA196276 and P50GM082250 (to C.S.C.), no. K24 AG053435 (to L.T.G.) Alzheimer Association grant no. AARG-16-441514 (to L.T.G. and M.A.). Additional support included an NSF GRFP fellowship (to K.A.O.-N.), an ARCS Foundation fellowship (to M.R.), institutional grant nos. UL1 TR001872 and K01AG053433 (to P.T.) and a Program for Breakthrough Biomedical Science funded by the Sandler Foundation (to C.S.C.). The authors thank the laboratories of K.M. Scaglione (Medical College of Wisconsin) and J. A. Wells (University of California San Francisco) for technical support, as well as S.-A. Mok for input on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.R., C.S.C. and J.E.G. designed the studies and wrote the manuscript. M.R., K.A.O.-N., V.A.A., Y.-F.C. and D.M.-C. conducted biochemistry experiments and generated necessary reagents. K.B., M.F.B. and M.R. designed and executed structural and computational studies. M.R. and D.M.-C. designed and conducted cell biology experiments. P.T. and L.T.G designed and conducted the immunohistochemistry experiments. J.E.G., C.S.C., M.A. and L.T.G. provided funding.

Corresponding authors

Correspondence to Charles S. Craik or Jason E. Gestwicki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables 1–5, Supplementary Figures 1–9

Supplementary Tables 1–5, Supplementary Figs. 1–9

Reporting Summary

Supplementary Table S5

List of caspase substrates that include potential, cryptic CHIP-binding sequences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravalin, M., Theofilas, P., Basu, K. et al. Specificity for latent C termini links the E3 ubiquitin ligase CHIP to caspases. Nat Chem Biol 15, 786–794 (2019). https://doi.org/10.1038/s41589-019-0322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0322-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing