Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan

Abstract

Marine seaweeds increasingly grow into extensive algal blooms, which are detrimental to coastal ecosystems, tourism and aquaculture. However, algal biomass is also emerging as a sustainable raw material for the bioeconomy. The potential exploitation of algae is hindered by our limited knowledge of the microbial pathways—and hence the distinct biochemical functions of the enzymes involved—that convert algal polysaccharides into oligo- and monosaccharides. Understanding these processes would be essential, however, for applications such as the fermentation of algal biomass into bioethanol or other value-added compounds. Here, we describe the metabolic pathway that enables the marine flavobacterium Formosa agariphila to degrade ulvan, the main cell wall polysaccharide of bloom-forming Ulva species. The pathway involves 12 biochemically characterized carbohydrate-active enzymes, including two polysaccharide lyases, three sulfatases and seven glycoside hydrolases that sequentially break down ulvan into fermentable monosaccharides. This way, the enzymes turn a previously unexploited renewable into a valuable and ecologically sustainable bioresource.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genomic overview of putative ulvan PUL in marine Bacteroidetes and the proteomic response of the F. agariphila PUL to ulvan and rhamnose.
Fig. 2: List of PUL H-encoded and relevant non-PUL H-encoded proteins, corresponding locus tags and functional annotation as well as their relative abundance (mean log2 ratio) with the respective carbon source.
Fig. 3: Structural analyses of ulvan-specific sulfatases.
Fig. 4: Zooming into the degradation of ulvan fragments.
Fig. 5: Structure of the l-rhamnose mutarotase P21_mutarotase.
Fig. 6: Model of the ulvan degradation pathway in F. agariphila as suggested by the proteogenomic, biochemical and structural biological analyses in this study.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors upon reasonable request. The protein structures are deposited in the PDB under 6HHM, 6HHN, 6HPD and 6HR5. Mass spectrometry data were deposited to the ProteomeXchange Consortium via the PRIDE partner repository64 with the dataset identifier PXD009299.

References

  1. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  CAS  Google Scholar 

  2. Kloareg, B. & Quatrano, R. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. 26, 259–315 (1988).

    Google Scholar 

  3. Wargacki, A. J. et al. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335, 308–313 (2012).

    Article  CAS  Google Scholar 

  4. Smetacek, V. & Zingone, A. Green and golden seaweed tides on the rise. Nature 504, 84 (2013).

    Article  CAS  Google Scholar 

  5. Liu, D. et al. The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuar. Coast. Shelf Sci. 129, 2–10 (2013).

    Article  CAS  Google Scholar 

  6. Ménesguen, A. & Piriou, J.-Y. Nitrogen loadings and macroalgal (Ulva sp.) mass accumulation in Brittany (France). Ophelia 42, 227–237 (1995).

    Article  Google Scholar 

  7. Lahaye, M. & Robic, A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8, 1765–1774 (2007).

    Article  CAS  Google Scholar 

  8. Lahaye, M., Brunel, M. & Bonnin, E. Fine chemical structure analysis of oligosaccharides produced by an ulvan-lyase degradation of the water-soluble cell-wall polysaccharides from Ulva sp. (Ulvales, Chlorophyta). Carbohydr. Res. 304, 325–333 (1997).

    Article  CAS  Google Scholar 

  9. Lahaye, M. NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohydr. Res. 314, 1–12 (1998).

    Article  CAS  Google Scholar 

  10. Ulaganathan, T. et al. New ulvan-degrading polysaccharide lyase family: structure and catalytic mechanism suggests convergent evolution of active site architecture. ACS Chem. Biol. 12, 1269–1280 (2017).

    Article  CAS  Google Scholar 

  11. Ulaganathan, T., Banin, E., Helbert, W. & Cygler, M. Structural and functional characterization of PL28 family ulvan lyase NLR48 from Nonlabens ulvanivorans. J. Biol. Chem. 293, 11564–11573 (2018).

    Article  CAS  Google Scholar 

  12. Ulaganathan, T., Helbert, W., Kopel, M., Banin, E. & Cygler, M. Structure–function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism. J. Biol. Chem. 293, 4026–4036 (2018).

    Article  CAS  Google Scholar 

  13. Melcher, R. L., Neumann, M., Werner, J. P. F., Gröhn, F. & Moerschbacher, B. M. Revised domain structure of ulvan lyase and characterization of the first ulvan binding domain. Sci. Rep. 7, 44115 (2017).

    Article  CAS  Google Scholar 

  14. Reisky, L. et al. Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901T. Appl. Microbiol. Biotechnol. 102, 6987–6996 (2018).

    Article  CAS  Google Scholar 

  15. Salinas, A. & French, C. E. The enzymatic ulvan depolymerisation system from the alga-associated marine flavobacterium Formosa agariphila. Algal Res. 27, 335–344 (2017).

    Article  Google Scholar 

  16. Collén, P. N. et al. A novel unsaturated β-glucuronyl hydrolase involved in ulvan degradation unveils the versatility of stereochemistry requirements in family GH105. J. Biol. Chem. 289, 6199–6211 (2014).

    Article  Google Scholar 

  17. Foran, E. et al. Functional characterization of a novel ‘ulvan utilization loci’ found in Alteromonas sp. LOR genome. Algal Res. 25, 39–46 (2017).

    Article  Google Scholar 

  18. Mann, A. J. et al. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl. Environ. Microbiol. 79, 6813–6822 (2013).

    Article  CAS  Google Scholar 

  19. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  CAS  Google Scholar 

  20. Barbeyron, T. et al. Matching the diversity of sulfated biomolecules: creation of a classification database for sulfatases reflecting their substrate specificity. PLoS ONE 11, e0164846 (2016).

    Article  Google Scholar 

  21. Mewis, K., Lenfant, N., Lombard, V. & Henrissat, B. Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization. Appl. Environ. Microbiol. 82, 1686–1692 (2016).

    Article  CAS  Google Scholar 

  22. Thomas, F. et al. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J. Biol. Chem. 288, 23021–23037 (2013).

    Article  CAS  Google Scholar 

  23. Demydchuk, M. et al. Insights into Hunter syndrome from the structure of iduronate-2-sulfatase. Nat. Commun. 8, 15786 (2017).

    Article  CAS  Google Scholar 

  24. Hanson, S. R., Best, M. D. & Wong, C. H. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed. 43, 5736–5763 (2004).

    Article  CAS  Google Scholar 

  25. Hettle, A. G. et al. The molecular basis of polysaccharide sulfatase activity and a nomenclature for catalytic subsites in this class of enzyme. Structure 26, 747–758. e4 (2018).

    Article  CAS  Google Scholar 

  26. Kopel, M. et al. New family of ulvan lyases identified in three isolates from the Alteromonadales order. J. Biol. Chem. 291, 5871–5878 (2016).

    Article  CAS  Google Scholar 

  27. Sato, K. et al. A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc. Natl Acad. Sci. USA 107, 276–281 (2010).

    Article  CAS  Google Scholar 

  28. Fujimoto, Z. et al. The structure of a Streptomyces avermitilis α-l-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J. Biol. Chem. 288, 12376–12385 (2013).

    Article  CAS  Google Scholar 

  29. Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2017).

    Article  Google Scholar 

  30. Ryu, K.-S. et al. Structural insights into the monosaccharide specificity of Escherichia coli rhamnose mutarotase. J. Mol. Biol. 349, 153–162 (2005).

    Article  CAS  Google Scholar 

  31. Richardson, J. S. et al. RhaU of Rhizobium leguminosarum is a rhamnose mutarotase. J. Bacteriol. 190, 2903–2910 (2008).

    Article  CAS  Google Scholar 

  32. Korndörfer, I., Fessner, W.-D. & Matthews, B. W. The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution. J. Mol. Biol. 300, 917–933 (2000).

    Article  Google Scholar 

  33. Koch, H., Freese, H. M., Hahnke, R. L., Simon, M. & Wietz, M. Adaptations of Alteromonas sp. 76-1 to polysaccharide degradation: a CAZyme plasmid for ulvan degradation and two alginolytic systems. Front. Microbiol. 10, 504 (2019).

    Article  Google Scholar 

  34. Hehemann, J. H. et al. Aquatic adaptation of a laterally acquired pectin degradation pathway in marine gammaproteobacteria. Environ. Microbiol. 19, 2320–2333 (2017).

    Article  CAS  Google Scholar 

  35. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    Article  CAS  Google Scholar 

  36. Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).

    Article  CAS  Google Scholar 

  37. Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2013).

    Article  Google Scholar 

  38. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  Google Scholar 

  39. Krzywinski, M. I. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 9, 1639–1645 (2009).

    Article  Google Scholar 

  40. MacCoss, M. J., Wu, C. C., Liu, H., Sadygov, R. & Yates, J. R. 3rd A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal. Chem. 75, 6912–6921 (2003).

    Article  CAS  Google Scholar 

  41. Schut, F. et al. Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 59, 2150–2160 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Grube, M. et al. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 9, 412–424 (2015).

    Article  CAS  Google Scholar 

  43. Otto, A. et al. Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat. Commun. 1, 137 (2010).

    Article  Google Scholar 

  44. Tyanova, S. & Cox, J. Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol. Biol. 1711, 133–148 (2018).

    Article  CAS  Google Scholar 

  45. Antelmann, H. et al. A proteomic view on genome-based signal peptide predictions. Genome Res. 11, 1484–1502 (2001).

    Article  CAS  Google Scholar 

  46. Eymann, C. et al. A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4, 2849–2876 (2004).

    Article  CAS  Google Scholar 

  47. Zybailov, B. et al. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339–2347 (2006).

    Article  CAS  Google Scholar 

  48. Li, C. et al. FastCloning: a highly simplified, purification-free, sequence-and ligation-independent PCR cloning method. BMC Biotechnol. 11, 92 (2011).

    Article  CAS  Google Scholar 

  49. Groisillier, A. et al. MARINE-EXPRESS: taking advantage of high throughput cloning and expression strategies for the post-genomic analysis of marine organisms. Microb. Cell Fact. 9, 45 (2010).

    Article  Google Scholar 

  50. Studier, F. W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

  51. Ladner, C. L., Yang, J., Turner, R. J. & Edwards, R. A. Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal. Biochem. 326, 13–20 (2004).

    Article  CAS  Google Scholar 

  52. Robic, A., Gaillard, C., Sassi, J. F., Lerat, Y. & Lahaye, M. Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers 91, 652–664 (2009).

    Article  CAS  Google Scholar 

  53. Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).

    Article  CAS  Google Scholar 

  54. Kabsch, W. Integration, scaling, space‐group assignment and post‐refinement. Acta Crystallogr. D 66, 133–144 (2010).

    Article  CAS  Google Scholar 

  55. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  56. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D 66, 22–25 (2010).

    Article  CAS  Google Scholar 

  57. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  58. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  59. Smart, O. S. et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D 68, 368–380 (2012).

    Article  CAS  Google Scholar 

  60. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  61. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).

    Article  CAS  Google Scholar 

  62. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  63. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D 62, 1002–1011 (2006).

    Article  Google Scholar 

  64. Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the German Research Foundation (DFG) for funding through the Research Unit FOR2406 ‘Proteogenomics of Marine Polysaccharide Utilization’ (POMPU) (by grant nos. BO 1862/17-1 to U.T.B., HE 7217/2-1 to J.-H.H. and SCHW 595/10-1 to T.S.). J.-H.H. acknowledges funding by the Emmy-Noether Program of the DFG (grant no. HE 7217/1-1). G.M. is grateful to the French National Research Agency (ANR) for its support with regards to the investment expenditure program IDEALG (grant no. ANR-10-BTBR-04) and the Blue Enzymes project (reference ANR-14-CE19-0020-01). M.-K.Z. and F.U. were supported by scholarships from the Institute of Marine Biotechnology e.V. We thank C. Leroux for mass spectrometry analyses and M. Czjzek and A. Boraston for helpful discussions. We are indebted to the local contacts for their support during X-ray data collection at the PROXIMA-1 and PROXIMA-2 beamlines (SOLEIL Synchrotron, Saint Aubin, France) and the P11 beamline (DESY, Hamburg, Germany). We thank A. Otto, S. Junker and T. Sura for help with the metabolic labeling approach and T. Hinzke for support with analyses of the proteome data. We thank F. Lesourd (Agrival, Plouenan, France) for the gift of the ‘Agrival’ ulvan sample.

Author information

Authors and Affiliations

Authors

Contributions

J.-H.H., T.S., G.M. and U.T.B. initiated the study and directed the project. L.R., A.P., R.L. and M.B. cloned the genes and expressed and purified the enzymes for the degradation reactions. M.B., J.-H.H. and L.R. isolated ulvan and purified oligomers. Metabolites were analyzed by C.S. via NMR and HPLC–ELS–MS for which M.D.M. provided resources. L.R. and M.B. performed biocatalyses for the analyses in gel-based assays. A.P. together with M.B. performed HPAEC–PAD analyses. M.-K.Z. with support from S.M., F.U. and A.T.-S. performed the proteome analyses for which D.B. provided the resources. N.G., C.S.R. and T.R. performed crystallographic experiments and solved the protein structures. G.M. analyzed the crystal structure of the l-rhamnose mutarotase and of the sulfatases. S.T. performed the computational analyses of PUL predictions. J.-H.H. and L.R. wrote the paper with input from U.T.B., G.M., S.M., M.-K.Z. and T.S. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Thomas Schweder, Uwe T. Bornscheuer or Jan-Hendrik Hehemann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–11, Supplementary Figures 1–48 and Supplementary Note

Reporting Summary

Supplementary Dataset 1

Summary of all proteins covered by the metabolic labeling approach.

Supplementary Dataset 2

Summary of all proteins covered by the subproteome fractionation.

Supplementary Dataset 3

Sequence-based prediction of subcellular protein localization for ulvan PUL-encoded proteins.

Supplementary Dataset 4

Multimodular proteins of ulvan PUL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisky, L., Préchoux, A., Zühlke, MK. et al. A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat Chem Biol 15, 803–812 (2019). https://doi.org/10.1038/s41589-019-0311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0311-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research