Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fragment-based discovery of a chemical probe for the PWWP1 domain of NSD3


Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: 15N TROSY NMR confirmation and structural analysis of fragment hits of the NSD3-PWWP1 domain.
Fig. 2: Structure-based optimization of methylimidazoles as NSD3-PWWP1 antagonists:
Fig. 3: Biophysical validation and selectivity profiling of the chemical probe BI-9321.
Fig. 4: Cellular target engagement of the NSD3-PWWP1 Probe BI-9321.
Fig. 5: BI-9321 downregulates MYC mRNA and reduces proliferation in MOLM-13 and RN2 cells.

Data availability

The authors declare that the data supporting the findings of this study are available within the publication and its Supplementary Information files or have been deposited in the RCSB Protein Data Bank (PDB, with the following accession numbers: selenomethionine labeled (6G3P); unlabeled (6G3T); X-ray structure of NSD3-PWWP1 in complex with compound 3 (6G24); X-ray structure of NSD3-PWWP1 in complex with compound 4 (6G25); X-ray structure of NSD3-PWWP1 in complex with compound 5 (6G27); X-ray structure of NSD3-PWWP1 in complex with compound 6 (6G29); X-ray structure of NSD3-PWWP1 in complex with compound 8 (6G2B); X-ray structure of NSD3-PWWP1 in complex with compound 9 (6G2C); X-ray structure of NSD3-PWWP1 in complex with compound 13 (6G2E); X-ray structure of NSD3-PWWP1 in complex with compound 16 (6G2F); X-ray structure of NSD3-PWWP1 in complex with compound BI-9321 (6G2O).


  1. 1.

    Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11, 384–400 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Brown, P. J. & Müller, S. Open access chemical probes for epigenetic targets. Future Med. Chem. 7, 1901–1917 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Huston, A., Arrowsmith, C. H., Knapp, S. & Schapira, M. Probing the epigenome. Nat. Chem. Biol. 11, 542 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Yang, L., Rau, R. & Goodell, M. A. DNMT3A in haematological malignancies. Nat. Rev. Cancer 15, 152 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Vougiouklakis, T., Hamamoto, R., Nakamura, Y. & Saloura, V. The NSD family of protein methyltransferases in human cancer. Epigenomics 7, 863–874 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Kang, D. et al. The histone methyltransferase Wolf–Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) is involved in human carcinogenesis. Genes, Chromosome. Cancer 52, 126–139 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Angrand, P. O. et al. NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines. Genomics 74, 79–88 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    Shen, C. et al. NSD3-short is an adaptor protein that couples BRD4 to the CHD8 chromatin remodeler. Mol. Cell 60, 847–859 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Gelsi-Boyer, V. et al. Comprehensive profiling of 8p11-12 amplification in breast cancer. Mol. Cancer Res. 3, 655 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    Wu, H. et al. Structural and histone binding ability characterizations of human PWWP domains. PLoS ONE 6, e18919 (2011).

    Article  Google Scholar 

  13. 13.

    Qin, S. & Min, J. Structure and function of the nucleosome-binding PWWP domain. Trends Biochem. Sci. 39, 536–547 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Vezzoli, A. et al. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat. Struct. Mol. Biol. 17, 617–619 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Hubbard, R. E. Fragment approaches in structure-based drug discovery. J. Synchrotron Rad. 15, 227–230 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Baurin, N. et al. Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets. J. Chem. Inf. Comp. Sci. 44, 2157–2166 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    Bergner, A. & Parel, S. P. Hit expansion approaches using multiple similarity methods and virtualized query structures. J. Chem. Inf. Modeling 53, 1057–1066 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Hosmane, R. S. & Liebman, J. F. Paradoxes and paradigms: why is quinoline less basic than pyridine or isoquinoline? A classical organic chemical perspective. Struct. Chem. 20, 693–697 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    Fang, R. et al. Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol. Cell 39, 222–233 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Machleidt, T. et al. NanoBRET—a novel BRET platform for the analysis of protein–protein interactions. ACS Chem. Bio. 10, 1797–1804 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Jafari, R. et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9, 2100–2122 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Dart, M. L. et al. Homogeneous assay for target engagement utilizing bioluminescent thermal shift. ACS Med. Chem. Lett. 9, 546–551 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Philpott, M. et al. Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching. Epigenetics & Chromatin 7, 14 (2014).

    Article  Google Scholar 

  24. 24.

    Frye, S. V. The art of the chemical probe. Nat. Chem. Biol. 6, 159–161 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Ross, A. & Senn, H. Automation of measurements and data evaluation in biomolecular NMR screening. Drug Discov. 6, 583–593 (2001).

    CAS  Google Scholar 

  26. 26.

    Mayer, M. & Meyer, B. Characterization of ligand binding by saturation transfer difference NMR Spectroscopy. Angew. Chem. Int. Edn 38, 1784–1788 (1999).

    CAS  Article  Google Scholar 

  27. 27.

    Nietlispach, D. Suppression of anti-TROSY lines in a sensitivity enhanced gradient selection TROSY scheme. J. Biomol. NMR 31, 161–166 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. Attenuated T(2) relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl Acad. Sci. USA 94, 12366–12371 (1997).

    CAS  Article  Google Scholar 

  29. 29.

    Grzesiek, S., Stahl, S. J., Wingfield, P. T. & Bax, A. The CD4 determinant for downregulation by HIV-1 Nef Directly Binds to Nef. Mapping of the Nef Binding Surface by NMR. Biochem. 35, 10256–10261 (1996).

    CAS  Article  Google Scholar 

  30. 30.

    Peng, C., Unger, S. W., Filipp, F. V., Sattler, M. & Szalma, S. Automated evaluation of chemical shift perturbation spectra: new approaches to quantitative analysis of receptor-ligand interaction NMR spectra. J. Biomol. NMR 29, 491–504 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    Martin, L. J. et al. Structure-sased design of an in vivo active selective BRD9 inhibitor. J. Med. Chem. 59, 4462–4475 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Willett, P. Combination of similarity rankings using data fusion. J. Chem. Inf. Mod. 53, 1–10 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Hert, J. et al. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Mod. 46, 462–470 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    Hawkins, P. C. D., Skillman, A. G. & Nicholls, A. Comparison of shape-matching and docking as virtual screening tools. J. Med. Chem. 50, 74–82 (2007).

    CAS  Article  Google Scholar 

  35. 35.

    Cheeseright, T. J., Mackey, M. D., Melville, J. L. & Vinter, J. G. FieldScreen: virtual screening using molecular fields. Application to the DUD data set. J. Chem. Inf. Mod. 48, 2108–2117 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Prot. 13, 2513–2526 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Yu, W. et al. A scintillation proximity assay for histone demethylases. Anal. Biochem. 463, 54–60 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D 67, 293–302 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of COOT. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    Collaborative. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  42. 42.

    Robers, M. B. et al. Target engagement and drug residence time can be observed in living cells with BRET. Nat. Comm. 6, 10091–10091 (2015).

    CAS  Article  Google Scholar 

Download references


The Structural Genomics Consortium is a registered charity (no. 1097737) that receives funds from AbbVie; Bayer Pharma AG; Boehringer Ingelheim; Canada Foundation for Innovation; Eshelman Institute for Innovation; Genome Canada; Innovative Medicines Initiative (EU/EFPIA) (ULTRA-DD grant no. 115766); Janssen; Merck & Co.; Novartis Pharma AG; Ontario Ministry of Economic Development and Innovation; Pfizer; São Paulo Research Foundation-FAPESP; Takeda and the Wellcome Trust. We thank the Expose team for data collection at the Swiss Light Source beamlines X06SA and X06DA. We thank D. Daniels, M. Robers and C. Corona from Promega for advising on the NanoBRET and target engagement assays, and acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for a postdoctoral fellowship awarded to D.D.

Author information




J.B. and U.R. supervised the chemistry team. U.R., T.W., S.Z. and D.B. designed synthetic strategies. D.D., R.A.N., M.S., M. Petronczki, D.B.-L., M.V., K.V.M.H., C.R.V. and M. Pearson designed biological experiments and supervised the biology teams. M.Z. supervised the DSF, NMR measurements of the FBS screening. A.Z. supervised protein production and ITC experiments. J.B., B.M. and A.W.-P. performed structural analysis. K.R., S.K. and S.W. performed SPR assays. O.F., F.L. and A.A.-H. performed selectivity assays. A.A.-H. contributed to performing SPR and ITC experiments. C.M.R. performed FRAP assays. M.M.S. performed NanoBRET assays. D.D. and M.C. performed cellular experiments. C.W. synthesized tracer ligands. M.M. and H.B. performed analytics and wrote the Supplementary Note. N.M. performed quantitative proteomics experiments. H.A. performed quantitative tandem mass spectroscopy. C.R., A.H. and T.K. performed biological experiments. B.S., D.H. and T.G. performed biochemical assays. X.-L.C. and J.E.F. provided Compchem support. G.B. supervised the collaboration with SGC. P.J.B. managed the project for SGC. C.H.A. provided supervision and funding. D.B.M. was responsible for the medicinal chemistry strategy. J.B., D.D., R.A.N. and U.R. prepared the manuscript with input from all authors.

Corresponding author

Correspondence to Jark Böttcher.

Ethics declarations

Competing interests

J.B., U.R., R.A.N., M. Petronczki, M.Z., N.M., K.R., A.Z., M.M., T.W., S.Z., H.A., H.B., C.M.R., A.H., T.K., M.C., B.S., S.W., D.H., X.-L.C., J.E.F., B.M., A.W.-P., T.G., G.B., M. Pearson and D.B.M. are employees of Boehringer Ingelheim.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–13, Supplementary Figs. 1–13

Reporting Summary

Supplementary Note

Synthetic procedures

Data Set 1

Data Set 2

Data Set 3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Böttcher, J., Dilworth, D., Reiser, U. et al. Fragment-based discovery of a chemical probe for the PWWP1 domain of NSD3. Nat Chem Biol 15, 822–829 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing