Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting BAX to drug death directly

Abstract

BCL-2 family protein interactions regulate apoptosis, a critical process that maintains tissue homeostasis but can cause a host of human diseases when deregulated. Venetoclax is the first FDA-approved drug to reactivate apoptosis in cancer by selectively targeting an anti-apoptotic BCL-2 family member. The drug’s activity relies on an ‘inhibit the inhibitor’ mechanism, whereby blockade of a key surface groove on BCL-2 disables its capacity to neutralize pro-apoptotic effectors, such as BAX, a chief executioner protein of the apoptotic pathway. A series of physiologic and pharmacologic regulatory sites that mediate the activation or inhibition of BAX have recently been identified, providing blueprints for the development of alternative apoptosis modulators to block pathologic cell survival or avert unwanted cell death by drugging BAX directly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BAX and BCL-2: wrestling twins that regulate apoptosis during homeostasis and disease.
Fig. 2: Indirect and direct activation of BAX-mediated apoptosis.
Fig. 3: A BH3 trigger site mediates the direct activation of BAX.
Fig. 4: Mechanistic basis for a therapeutic window for indirect and direct pharmacologic activation of BAX.
Fig. 5: Molecular and mechanistic diversity of BAX sensitizers and activators.
Fig. 6: Modulating apoptosis by direct targeting of the canonical pocket of BAK.
Fig. 7: Physiologic inhibitors of BAX restrain key structural regions implicated in BAX activation.
Fig. 8: Small-molecule inhibition of BAX.

Similar content being viewed by others

References

  1. Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    Article  CAS  Google Scholar 

  2. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  CAS  Google Scholar 

  3. Sattler, M. et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997). This paper was the first to reveal the structure of the canonical BH3-in-groove interaction that both established the paradigm for heterodimerization between pro- and anti-apoptotic BCL-2 family members and provided a blueprint for developing anti-apoptotic inhibitors to reactivate apoptosis in cancer.

    Article  CAS  Google Scholar 

  4. Green, D. R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science 305, 626–629 (2004).

    Article  CAS  Google Scholar 

  5. Korsmeyer, S. J., Shutter, J. R., Veis, D. J., Merry, D. E. & Oltvai, Z. N. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin. Cancer Biol. 4, 327–332 (1993).

    CAS  PubMed  Google Scholar 

  6. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  Google Scholar 

  7. Wang, K., Gross, A., Waksman, G. & Korsmeyer, S. J. Mutagenesis of the BH3 domain of BAX identifies residues critical for dimerization and killing. Mol. Cell. Biol. 18, 6083–6089 (1998).

    Article  CAS  Google Scholar 

  8. Chen, L. et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17, 393–403 (2005).

    Article  CAS  Google Scholar 

  9. Willis, S. N. et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315, 856–859 (2007).

    Article  CAS  Google Scholar 

  10. Suzuki, M., Youle, R. J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000). This paper reported the first high-resolution structure of pro-apoptotic BAX, revealing the conformational organization of key functional regions implicated in the BAX activation pathway.

    Article  CAS  Google Scholar 

  11. Wang, K., Yin, X. M., Chao, D. T., Milliman, C. L. & Korsmeyer, S. J. BID: a novel BH3 domain-only death agonist. Genes Dev. 10, 2859–2869 (1996).

    Article  CAS  Google Scholar 

  12. Cheng, E. H. et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001).

    Article  CAS  Google Scholar 

  13. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).

    Article  CAS  Google Scholar 

  14. Wei, M. C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    Article  CAS  Google Scholar 

  16. Walensky, L. D. et al. A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell 24, 199–210 (2006).

    Article  CAS  Google Scholar 

  17. Gavathiotis, E. et al. BAX activation is initiated at a novel interaction site. Nature 455, 1076–1081 (2008). This paper applied a stapled BIM BH3 helix to uncover the location of a trigger site at the N-terminal surface (α1/α6) of BAX that mediates its direct activation by select BH3-only proteins.

    Article  CAS  Google Scholar 

  18. Czabotar, P. E., Colman, P. M. & Huang, D. C. Bax activation by Bim? Cell Death Differ. 16, 1187–1191 (2009).

    Article  CAS  Google Scholar 

  19. Brouwer, J. M. et al. Conversion of Bim-BH3 from activator to inhibitor of Bak through structure-based design. Mol. Cell 68, 659–672.e659 (2017).

    Article  CAS  Google Scholar 

  20. Czabotar, P. E. et al. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152, 519–531 (2013). This paper reported crystal structures of activating BH3 interactions at the canonical groove of a BAX construct lacking its C-terminal helix and a symmetric homodimer of a BAX truncate (α2–α5) believed to represent a nucleating unit for BAX homo-oligomerization.

    Article  CAS  Google Scholar 

  21. Dengler, M. A. et al. BAX activation: mutations near its proposed non-canonical BH3 binding site reveal allosteric changes controlling mitochondrial association. Cell Rep. 27, 359–373.e356 (2019).

    Article  CAS  Google Scholar 

  22. Mérino, D. et al. The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins. J. Cell Biol. 186, 355–362 (2009).

    Article  Google Scholar 

  23. Llambi, F. et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell 44, 517–531 (2011).

    Article  CAS  Google Scholar 

  24. Gavathiotis, E., Reyna, D. E., Davis, M. L., Bird, G. H. & Walensky, L. D. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol. Cell 40, 481–492 (2010).

    Article  CAS  Google Scholar 

  25. Garner, T. P. et al. An autoinhibited dimeric Form of BAX regulates the BAX activation pathway. Mol. Cell 64, 431 (2016).

    Article  CAS  Google Scholar 

  26. Reyna, D. E. et al. Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell 32, 490–505.e410 (2017). Building on the identification of the first direct and selective BAX activator molecule (ref. 27), this paper advanced a more potent analog from mechanistic validation to in vivo proof of concept, demonstrating that direct pharmacologic activation of BAX could effectively treat a mouse model of human acute myeloid leukemia.

    Article  CAS  Google Scholar 

  27. Gavathiotis, E., Reyna, D. E., Bellairs, J. A., Leshchiner, E. S. & Walensky, L. D. Direct and selective small-molecule activation of proapoptotic BAX. Nat. Chem. Biol. 8, 639–645 (2012).

    Article  CAS  Google Scholar 

  28. Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  Google Scholar 

  29. Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351–365 (2006).

    Article  CAS  Google Scholar 

  30. Davids, M. S. et al. Comprehensive safety analysis of venetoclax monotherapy for patients with relapsed/refractory chronic lymphocytic leukemia. Clin. Cancer Res. 24, 4371–4379 (2018).

    Article  CAS  Google Scholar 

  31. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  Google Scholar 

  32. Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  Google Scholar 

  33. Pritz, J. R. et al. Allosteric sensitization of proapoptotic BAX. Nat. Chem. Biol. 13, 961–967 (2017).

    Article  CAS  Google Scholar 

  34. Arnoult, D. et al. Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc. Natl Acad. Sci. USA 101, 7988–7993 (2004).

    Article  CAS  Google Scholar 

  35. Brahmbhatt, H., Uehling, D., Al-Awar, R., Leber, B. & Andrews, D. Small molecules reveal an alternative mechanism of Bax activation. Biochem. J. 473, 1073–1083 (2016).

    Article  CAS  Google Scholar 

  36. Kale, J. et al. Phosphorylation switches Bax from promoting to inhibiting apoptosis thereby increasing drug resistance. EMBO Rep. 19, e45235 (2018).

    Article  Google Scholar 

  37. Xin, M. et al. Small-molecule Bax agonists for cancer therapy. Nat. Commun. 5, 4935 (2014).

    Article  CAS  Google Scholar 

  38. Gahl, R. F., He, Y., Yu, S. & Tjandra, N. Conformational rearrangements in the pro-apoptotic protein, Bax, as it inserts into mitochondria: a cellular death switch. J. Biol. Chem. 289, 32871–32882 (2014).

    Article  CAS  Google Scholar 

  39. Edlich, F. et al. Bcl-xL retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011).

    Article  CAS  Google Scholar 

  40. Dai, H. et al. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J. Cell Biol. 194, 39–48 (2011).

    Article  CAS  Google Scholar 

  41. Leshchiner, E. S., Braun, C. R., Bird, G. H. & Walensky, L. D. Direct activation of full-length proapoptotic BAK. Proc. Natl Acad. Sci. USA 110, E986–E995 (2013).

    Article  CAS  Google Scholar 

  42. Moldoveanu, T. et al. BID-induced structural changes in BAK promote apoptosis. Nat. Struct. Mol. Biol. 20, 589–597 (2013). This paper reported a solution structure of the activating interaction between a stapled BID BH3 helix and the canonical groove of BAK lacking its C-terminal helix, informing the ‘hit-and-run’ mechanism for direct BAK activation.

    Article  CAS  Google Scholar 

  43. Edwards, A. L. et al. Multimodal interaction with BCL-2 family proteins underlies the proapoptotic activity of PUMA BH3. Chem. Biol. 20, 888–902 (2013).

    Article  CAS  Google Scholar 

  44. Kotschy, A. et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538, 477–482 (2016).

    Article  Google Scholar 

  45. Cuconati, A. & White, E. Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev. 16, 2465–2478 (2002).

    Article  CAS  Google Scholar 

  46. Ma, J. et al. Structural mechanism of Bax inhibition by cytomegalovirus protein vMIA. Proc. Natl Acad. Sci. USA 109, 20901–20906 (2012). This paper revealed a physiologic mechanism by which a viral protein can directly target BAX to suppress its conformational activation.

    Article  CAS  Google Scholar 

  47. Barclay, L. A. et al. Inhibition of pro-apoptotic BAX by a noncanonical interaction mechanism. Mol. Cell 57, 873–886 (2015).

    Article  CAS  Google Scholar 

  48. Niu, X. et al. A small-molecule inhibitor of Bax and Bak oligomerization prevents genotoxic cell death and promotes neuroprotection. Cell Chem. Biol. 24, 493–506.e495 (2017).

    Article  CAS  Google Scholar 

  49. Garner, T. P. et al. Small-molecule allosteric inhibitors of BAX. Nat. Chem. Biol. 15, 322–330 (2019). This paper identified molecular inhibitors of BAX that operate by targeting a surface pocket and imposing allosteric restraint on key regions implicated in the conformational activation of BAX.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank E. Smith for figure preparation and graphics support. This work was supported by National Institutes of Health (NIH) grant R35CA197583 and a Leukemia and Lymphoma Society (LLS) Scholar Award. The author is also indebted to the Wolpoff Family Foundation, J. and L. LaTorre, the family of I. Coll, and the Todd J. Schwartz Memorial Fund for their steadfast financial contributions to our cancer chemical biology research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loren D. Walensky.

Ethics declarations

Competing interests

L.D.W. is a scientific advisory board member and consultant for Aileron Therapeutics.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walensky, L.D. Targeting BAX to drug death directly. Nat Chem Biol 15, 657–665 (2019). https://doi.org/10.1038/s41589-019-0306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0306-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing