Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Small-molecule control of antibody N-glycosylation in engineered mammalian cells

Abstract

N-linked glycosylation in monoclonal antibodies (mAbs) is crucial for structural and functional properties of mAb therapeutics, including stability, pharmacokinetics, safety and clinical efficacy. The biopharmaceutical industry currently lacks tools to precisely control N-glycosylation levels during mAb production. In this study, we engineered Chinese hamster ovary cells with synthetic genetic circuits to tune N-glycosylation of a stably expressed IgG. We knocked out two key glycosyltransferase genes, α-1,6-fucosyltransferase (FUT8) and β-1,4-galactosyltransferase (β4GALT1), genomically integrated circuits expressing synthetic glycosyltransferase genes under constitutive or inducible promoters and generated antibodies with concurrently desired fucosylation (0–97%) and galactosylation (0–87%) levels. Simultaneous and independent control of FUT8 and β4GALT1 expression was achieved using orthogonal small molecule inducers. Effector function studies confirmed that glycosylation profile changes affected antibody binding to a cell surface receptor. Precise and rational modification of N-glycosylation will allow new recombinant protein therapeutics with tailored in vitro and in vivo effects for various biotechnological and biomedical applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Overview of cell engineering for mAb and synthetic gene circuits expression in knockout cell lines.
Fig. 2: FUT8 and β4GALT1 gene deletions abolish mAb fucosylation and galactosylation, and FUT8-C and B4GALT1-C circuits restore them.
Fig. 3: Circuits encoding inducible FUT8 or β4GALT1 gene expression enable tunable levels of fucosylated or galactosylated antibody in FUT8−/− or β4GALT1−/− cells.
Fig. 4: Simultaneous, independent regulation of FUT8 and β4GALT1 gene expression in FUT8−/−/β4GALT1−/− cells integrated with FUT8-ABA and B4GALT1-Dox circuits led to a wide range of fucosylation and galactosylation levels and various levels of binding affinity of mAb to FcγRIIIa.

Data availability

The authors declare that all relevant data supporting the findings of this study are available within the paper and its Supplementary Information. Biological materials generated in this study are available on Addgene or from the corresponding author upon reasonable request. Circuits FUT8-Dox, FUT8-ABA, B4GALT1-Dox and B4GALT1-ABA are available as Addgene plasmid numbers 124631, 124632, 124633 and 124639, respectively.

References

  1. Weiner, L. M., Murray, J. C. & Shuptrine, C. W. Antibody-based immunotherapy of cancer. Cell 148, 1081–1084 (2012).

    Article  CAS  Google Scholar 

  2. Jefferis, R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol. Sci. 30, 356–362 (2009).

    Article  CAS  Google Scholar 

  3. Chiu, M. L. & Gilliland, G. L. Engineering antibody therapeutics. Curr. Opin. Struct. Biol. 38, 163–173 (2016).

    Article  CAS  Google Scholar 

  4. Liu, L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J. Pharm. Sci. 104, 1866–1884 (2015).

    Article  CAS  Google Scholar 

  5. Solá, R. J. & Griebenow, K. A. I. Effects of glycosylation on the stability of protein pharmaceuticals. Biochemistry 98, 1223–1245 (2010).

    Google Scholar 

  6. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    Article  CAS  Google Scholar 

  7. Higel, F., Seidl, A., Sörgel, F. & Friess, W. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur. J. Pharm. Biopharm. 100, 94–100 (2016).

    Article  CAS  Google Scholar 

  8. Goetze, A. M. et al. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21, 949–959 (2011).

    Article  CAS  Google Scholar 

  9. Raju, T. S. & Lang, S. E. Diversity in structure and functions of antibody sialylation in the Fc. Curr. Opin. Biotechnol. 30, 147–152 (2014).

    Article  CAS  Google Scholar 

  10. Shinkawa, T. et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 (2003).

    Article  CAS  Google Scholar 

  11. Reusch, D. & Tejada, M. L. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25, 1325–1334 (2015).

    Article  CAS  Google Scholar 

  12. Hodoniczky, J., Yuan, Z. Z. & James, D. C. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol. Prog. 21, 1644–1652 (2005).

    Article  CAS  Google Scholar 

  13. Wang, L. X. & Lomino, J. V. Emerging technologies for making glycan-defined glycoproteins. ACS Chem. Biol. 7, 110–122 (2012).

    Article  CAS  Google Scholar 

  14. Dekkers, G. et al. Multi-level glyco-engineering techniques to generate IgG with defined Fc-glycans. Sci. Rep. 6, 36964 (2016).

    Article  CAS  Google Scholar 

  15. Tejwani, V., Andersen, M. R., Nam, J. H. & Sharfstein, S. T. Glycoengineering in CHO cells: advances in systems biology. Biotechnol. J. 13, 1700234 (2018).

    Article  Google Scholar 

  16. Li, F. et al. Cell culture processes for monoclonal antibody production. MAbs 2, 466–479 (2010).

    Article  Google Scholar 

  17. Gramer, M. J. et al. Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol. Bioeng. 108, 1591–1602 (2011).

    Article  CAS  Google Scholar 

  18. Mori, K. et al. Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol. Bioeng. 88, 901–908 (2004).

    Article  CAS  Google Scholar 

  19. Yamane-Ohnuki, N. et al. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng. 87, 614–622 (2004).

    Article  CAS  Google Scholar 

  20. Malphettes, L. et al. Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol. Bioeng. 106, 774–783 (2010).

    Article  CAS  Google Scholar 

  21. Cristea, S. et al. In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol. Bioeng. 110, 871–880 (2013).

    Article  CAS  Google Scholar 

  22. Sun, T. et al. Functional knockout of FUT8 in Chinese hamster ovary cells using CRISPR/Cas9 to produce a defucosylated antibody. Eng. Life Sci. 15, 660–666 (2015).

    Article  CAS  Google Scholar 

  23. Kanda, Y. et al. Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J. Biotechnol. 130, 300–310 (2007).

    Article  CAS  Google Scholar 

  24. Imai-Nishiya, H. et al. Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol. 7, 84 (2007).

    Article  Google Scholar 

  25. Meuris, L. et al. GlycoDelete engineering of mammalian cells simplifies N-glycosylation of recombinant proteins. Nat. Biotechnol. 32, 485–489 (2014).

    Article  CAS  Google Scholar 

  26. Yang, Z. et al. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat. Biotechnol. 33, 842–844 (2015).

    Article  CAS  Google Scholar 

  27. Schulz, M. A. et al. Glycoengineering design options for IgG1 in CHO cells using precise gene editing. Glycobiology 28, 542–549 (2018).

    Article  Google Scholar 

  28. Raymond, C. et al. Production of α2,6-sialylated IgG1 in CHO cells. MAbs 7, 571–583 (2015).

    Article  CAS  Google Scholar 

  29. Umaña, P., Jean-Mairet, J., Moudry, R., Amstutz, H. & Bailey, J. E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 17, 176–180 (1999).

    Article  Google Scholar 

  30. Giddens, J. P., Lomino, J. V., DiLillo, D. J., Ravetch, J. V. & Wang, L.-X. Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody. Proc. Natl Acad. Sci. USA 115, 12023–12027 (2018).

    Article  CAS  Google Scholar 

  31. Li, T. et al. Modulating IgG effector function by Fc glycan engineering. Proc. Natl Acad. Sci. USA 114, 3485–3490 (2017).

    Article  CAS  Google Scholar 

  32. Higel, F., Demelbauer, U., Seidl, A., Friess, W. & Sörgel, F. Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Anal. Bioanal. Chem. 405, 2481–2493 (2013).

    Article  CAS  Google Scholar 

  33. Chen, X. & Flynn, G. C. Analysis of N-glycans from recombinant immunoglobulin G by on-line reversed-phase high-performance liquid chromatography/mass spectrometry. Anal. Biochem. 370, 147–161 (2007).

    Article  CAS  Google Scholar 

  34. Gaidukov, L. et al. Multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Res. 46, 4072–4086 (2018).

    Article  CAS  Google Scholar 

  35. Duportet, X. et al. A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res. 42, 13440–13451 (2014).

    Article  CAS  Google Scholar 

  36. Zong, H. et al. Producing defucosylated antibodies with enhanced in vitro antibody-dependent cellular cytotoxicity via FUT8 knockout CHO-S cells. Eng. Life Sci. 17, 801–808 (2017).

    Article  CAS  Google Scholar 

  37. Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  Google Scholar 

  38. Washburn, N. et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc. Natl Acad. Sci. USA 112, E1297–E1306 (2015).

    Article  CAS  Google Scholar 

  39. Dow, L. E. et al. Conditional reverse tet-transactivator mouse strains for the efficient induction of TRE-regulated transgenes in mice. PLoS One 9, e95236 (2014).

    Article  Google Scholar 

  40. Stanton, B. C. et al. Systematic transfer of prokaryotic sensors and circuits to mammalian cells. ACS Synth. Biol. 3, 880–891 (2014).

    Article  CAS  Google Scholar 

  41. Liang, F., Sen, Ho, W., Q. & Crabtree, G. R. Engineering the ABA plant stress pathway for regulation of induced proximity. Sci. Signal. 4, rs2 (2011).

    Article  Google Scholar 

  42. Thomann, M., Reckermann, K., Reusch, D., Prasser, J. & Tejada, M. L. Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies. Mol. Immunol. 73, 69–75 (2016).

    Article  CAS  Google Scholar 

  43. Liu, S. D. et al. Afucosylated antibodies increase activation of FcγRIIIa-dependent signaling components to intensify processes promoting ADCC. Cancer Immunol. Res. 3, 173–183 (2015).

    Article  CAS  Google Scholar 

  44. Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4, e5553 (2009).

    Article  Google Scholar 

  45. Guye, P., Li, Y., Wroblewska, L., Duportet, X. & Weiss, R. Rapid, modular and reliable construction of complex mammalian gene circuits. Nucleic Acids Res. 41, e156 (2013).

    Article  Google Scholar 

  46. Cong, L. et al. Multiplex genome engineering using CRISPR/cas systems. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  47. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  Google Scholar 

  48. Shang, T. Q. et al. Development and application of a robust N-glycan profiling method for heightened characterization of monoclonal antibodies and related glycoproteins. J. Pharm. Sci. 103, 1967–1978 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Lee for help with PCR analysis, K. Jagtap and S. Mamo for help with mammalian cell culture, and B. Teague for critical reading of the manuscript. This work was supported by the Pfizer-MIT PTM collaboration.

Author information

Authors and Affiliations

Authors

Contributions

M.M.C., L.G., G.J., J.J.S., R.C., J.K.M., B.C.M., B.F., D.A.L., N.M.S., T.K.L. and R.W. conceived and designed the study. M.M.C., L.G., G.J. and W.A.T. designed genetic circuits. M.M.C., L.G., G.J. and J.L.L. constructed genetic circuits. M.M.C., L.G. and G.J. constructed cell lines. M.M.C. and G.J. performed fed-batch cultures. A.-H.A.C., K.C., B.T. and J.K.M. performed glycan analysis. S.D., D.A.L. and M.S. conceived and performed computational analysis. P.S. performed SPR analysis. M.M.C., L.G. and G.J. wrote the manuscript. All authors commented on and approved the manuscript.

Corresponding author

Correspondence to Ron Weiss.

Ethics declarations

Competing interests

A US patent concerning the technology described in this paper has been filed by Pfizer, Inc. and Massachusetts Institute of Technology entitled ‘Mammalian Synthetic Biology Approaches for the Precise Control of Protein N-Linked Glycosylation’.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–7

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, M.M., Gaidukov, L., Jung, G. et al. Small-molecule control of antibody N-glycosylation in engineered mammalian cells. Nat Chem Biol 15, 730–736 (2019). https://doi.org/10.1038/s41589-019-0288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0288-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing