Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-based control of metabolic flux through assembly of synthetic organelles


To maximize a desired product, metabolic engineers typically express enzymes to high, constant levels. Yet, permanent pathway activation can have undesirable consequences including competition with essential pathways and accumulation of toxic intermediates. Faced with similar challenges, natural metabolic systems compartmentalize enzymes into organelles or post-translationally induce activity under certain conditions. Here we report that optogenetic control can be used to extend compartmentalization and dynamic control to engineered metabolisms in yeast. We describe a suite of optogenetic tools to trigger assembly and disassembly of metabolically active enzyme clusters. Using the deoxyviolacein biosynthesis pathway as a model system, we find that light-switchable clustering can enhance product formation six-fold and product specificity 18-fold by decreasing the concentration of intermediate metabolites and reducing flux through competing pathways. Inducible compartmentalization of enzymes into synthetic organelles can thus be used to control engineered metabolic pathways, limit intermediates and favor the formation of desired products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light-switchable synthetic organelles for redirecting metabolic flux.
Fig. 2: Light-regulated organelle formation depends on component concentration.
Fig. 3: Redirecting flux in the deoxyviolacein pathway using light-inducible optoClusters.
Fig. 4: Redirecting flux in the prodeoxyviolacein pathway using light-dissociable PixELLs.
Fig. 5: Light-switchable metabolic flux control at an enzymatic branch point.

Similar content being viewed by others

Data availability

All plasmids, strains and raw data will be made available upon reasonable request to the corresponding authors.


  1. Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Keasling, J. D. Manufacturing molecules through metabolic engineering. Science 50, 1355 (2011).

    Google Scholar 

  3. Ajikumar, P. K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lalwani, M. A., Zhao, E. M. & Avalos, J. L. Current and future modalities of dynamic control in metabolic engineering. Curr. Opin. Biotechnol. 52, 56–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Tomala, K. & Korona, R. Evaluating the fitness cost of protein expression in Saccharomyces cerevisiae. Genome Biol. Evol. 5, 2051–2060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brockman, I. M. & Prather, K. L. J. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab. Eng. 28, 104–113 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Tan, S. Z. & Prather, K. L. Dynamic pathway regulation: recent advances and methods of construction. Curr. Opin. Chem. Biol. 41, 28–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Thomik, T., Wittig, I., Choe, J. Y., Boles, E. & Oreb, M. An artificial transport metabolon facilitates improved substrate utilization in yeast. Nat. Chem. Biol. 13, 1158–1163 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Lin, J. L., Zhu, J. & Wheeldon, I. Synthetic protein scaffolds for biosynthetic pathway colocalization on lipid droplet membranes. ACS Synth. Biol. 6, 1534–1544 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Pedley, A. M. & Benkovic, S. J. A new view into the regulation of purine metabolism: the purinosome. Trends Biochem. Sci. 42, 141–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. French, J. B. et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733–737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, Y. et al. Protein–protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat. Commun. 8, 15212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Narayanaswamy, R. et al. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc. Natl Acad. Sci. USA 106, 10147–10152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kistler, H. C. & Broz, K. Cellular compartmentalization of secondary metabolism. Front. Microbiol. 6, 1–11 (2015).

    Article  Google Scholar 

  15. Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 32, 1011–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. George, K. W. et al. Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metab. Eng. 47, 60–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Li, T., Chen, X., Cai, Y. & Dai, J. Artificial Protein Scaffold System (AProSS): an efficient method to optimize exogenous metabolic pathways in Saccharomyces cerevisiae. Metab. Eng. 49, 13–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Lau, Y. H., Giessen, T. W., Altenburg, W. J. & Silver, P. A. Prokaryotic nanocompartments form synthetic organelles in a eukaryote. Nat. Commun. 9, 1311 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Avalos, J. L., Fink, G. R. & Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31, 335–341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeLoache, W. C., Russ, Z. N. & Dueber, J. E. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat. Commun. 7, 11152 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hammer, S. K. & Avalos, J. L. Harnessing yeast organelles for metabolic engineering. Nat. Chem. Biol. 13, 823–832 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Toettcher, J. E., Voigt, Ca, Weiner, O. D. & Lim, Wa The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nat. Methods 8, 35–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Dine, E., Gil, A. A., Uribe, G., Brangwynne, C. P. & Toettcher, J. E. Protein phase separation provides long-term memory of transient spatial stimuli. Cell Syst. 6, 655–663 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taslimi, A. et al. An optimized optogenetic clustering tool for probing protein interaction and function. Nat. Commun. 5, 4925 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura, H. et al. Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions. Nat. Mater. 17, 79–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Bugaj, L. J., Choksi, A. T., Mesuda, C. K., Kane, R. S. & Schaffer, D. V. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods 10, 249–252 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Gil, A. A. et al. Photoactivation of the BLUF protein PixD probed by the site-specific incorporation of fluorotyrosine residues. J. Am. Chem. Soc. 139, 14638–14648 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shemiakina, I. I. et al. A monomeric red fluorescent protein with low cytotoxicity. Nat. Commun. 3, 1204 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  32. Yuan, J. & Ching, C. B. Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds. ACS Synth. Biol. 4, 23–31 (2014).

    Article  PubMed  Google Scholar 

  33. Zhao, E. M. et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature 555, 683–687 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan, H. & Bauer, C. E. PixE promotes dark oligomerization of the BLUF photoreceptor PixD. Proc. Natl Acad. Sci. USA 105, 11715–11719 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brachmann, C. B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Giaever, G. & Nislow, C. The yeast deletion collection: a decade of functional genomics. Genetics 197, 451–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Entian, K. D. & Kötter, P. 25 Yeast genetic strain and plasmid collections. Meth. Microbiol. 36, 629–666 (2007).

    Article  CAS  Google Scholar 

  38. Lee, M. E., Aswani, A., Han, A. S., Tomlin, C. J. & Dueber, J. E. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res. 41, 10668–10678 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bracha, D. et al. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175, 1467–1480.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ryan, K. S., Balibar, C. J., Turo, K. E., Walsh, C. T. & Drennan, C. L. The violacein biosynthetic enzyme VioE shares a fold with lipoprotein transporter proteins. J. Biol. Chem. 283, 6467–6475 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Martin, V. J. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature 21, 796–802 (2003).

    CAS  Google Scholar 

  42. Ro, D. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 3–6 (2006).

    Article  Google Scholar 

  43. Hua Yuan, H. et al. Mutational and Structural Studies of the PixD BLUF Output Signal That Affects Light-Regulated Interactions with PixE. Biochemistry 50, 6365–6375 (2011).

    Article  PubMed  Google Scholar 

Download references


We thank all members of the Toettcher and Avalos laboratories for helpful comments. We also thank J. Dueber for kindly providing violacein enzyme plasmids. This work was supported by the Maeder Graduate Fellowship in Energy and the Environment (to E.M.Z.), NIH grant DP2EB024247 (to J.E.T.) and The Pew Charitable Trusts, the U.S. DOE Office of Biological and Environmental Research, Genomic Science Program Award DESC0019363, and NSF CAREER Award CBET-1751840 (to J.L.A.) and a Schmidt Transformative Technology grant (to J.E.T. and J.L.A).

Author information

Authors and Affiliations



E.M.Z., M.Z.W., J.E.T. and J.L.A. conceived the project and designed the experiments. E.M.Z. and N.S. conducted all metabolic flux experiments. E.M.Z., N.S., M.Z.W., E.D. and N.L.P. cloned constructs and performed microscopy. Z.G. contributed methodology and reagents. E.M.Z., J.E.T. and J.L.A. wrote the paper with editing from all authors. J.E.T. and J.L.A. provided funding and supervised the research.

Corresponding authors

Correspondence to José L. Avalos or Jared E. Toettcher.

Ethics declarations

Competing interests

Some of the authors are co-inventors on patent applications harnessing optogenetics for metabolic engineering (J.L.A., J.E.T. and E.M.Z.: patent application no. WO2017177147A1) and establishing optogenetic control of protein clustering (J.E.T.: patent application no. US20170355977A1).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Supplementary Figures 1–11, Supplementary Note 1

Reporting Summary

Supplementary Video 1

OptoDroplet formation and dissociation in S. cerevisiae.

Supplementary Video 2

OptoCluster formation and dissociation in S. cerevisiae.

Supplementary Video 3

PixELL formation and dissociation in S. cerevisiae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, E.M., Suek, N., Wilson, M.Z. et al. Light-based control of metabolic flux through assembly of synthetic organelles. Nat Chem Biol 15, 589–597 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research