Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition


Inhibition of the NLRP3 inflammasome is a promising strategy for the development of new treatments for inflammatory diseases. MCC950 is a potent and specific small-molecule inhibitor of the NLRP3 pathway, but its molecular target is not defined. Here, we show that MCC950 directly interacts with the Walker B motif within the NLRP3 NACHT domain, thereby blocking ATP hydrolysis and inhibiting NLRP3 activation and inflammasome formation.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: MCC950 directly interacts with NLRP3.
Fig. 2: MCC950 interacts with the NACHT domain of NLRP3.
Fig. 3: MCC950 binds non-covalently to NLRP3, proximal to the Walker B motif and blocks NLRP3 ATPase activity.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Boucher, D. et al. J. Exp. Med. 215, 827–840 (2018).

    CAS  Article  Google Scholar 

  2. Broz, P. & Dixit, V. M. Nat. Rev. Immunol. 16, 407–420 (2016).

    CAS  Article  Google Scholar 

  3. Prochnicki, T., Mangan, M. S. & Latz, E. F1000Res. 5, 1469 (2016).

    Article  Google Scholar 

  4. Guo, H., Callaway, J. B. & Ting, J. P. Nat. Med. 21, 677–687 (2015).

    Article  Google Scholar 

  5. Broderick, L. et al. Annu. Rev. Pathol. 10, 395–424 (2015).

    CAS  Article  Google Scholar 

  6. De Nardo, D., De Nardo, C. M. & Latz, E. Am. J. Pathol. 184, 42–54 (2014).

    Article  Google Scholar 

  7. Coll, R. C. et al. Nat. Med. 21, 248–255 (2015).

    CAS  Article  Google Scholar 

  8. van Hout, G. P. et al. Eur. Heart. J. 38, 828–836 (2017).

    PubMed  Google Scholar 

  9. Primiano, M. J. et al. J. Immunol. 197, 2421–2433 (2016).

    CAS  Article  Google Scholar 

  10. Kim, R. Y. et al. Am. J. Respir. Crit. Care Med. 196, 283–297 (2017).

    CAS  Article  Google Scholar 

  11. Tate, M. D. et al. Sci. Rep. 6, 27912 (2016).

    CAS  Article  Google Scholar 

  12. Kammoun, H. L. et al. Mol. Metab. 10, 66–73 (2018).

    CAS  Article  Google Scholar 

  13. Moffat, J. G. et al. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    CAS  Article  Google Scholar 

  14. Gross, C. J. et al. Immunity 45, 761–773 (2016).

    CAS  Article  Google Scholar 

  15. Gaidt, M. M. et al. Immunity 44, 833–846 (2016).

    CAS  Article  Google Scholar 

  16. Shi, H. et al. Nat. Immunol. 17, 250–258 (2016).

    CAS  Article  Google Scholar 

  17. White, C. S., Lawrence, C. B., Brough, D. & Rivers-Auty, J. Brain Pathol. 27, 223–234 (2017).

    Article  Google Scholar 

  18. Van Gorp, H. et al. Proc. Natl Acad. Sci. USA 113, 14384–14389 (2016).

    Article  Google Scholar 

  19. Lomenick, B. et al. Proc. Natl Acad. Sci. USA 106, 21984–21989 (2009).

    CAS  Article  Google Scholar 

  20. Schroder, K. & Tschopp, J. Cell 140, 821–832 (2010).

    CAS  Article  Google Scholar 

  21. Duncan, J. A. et al. Proc. Natl Acad. Sci. USA 104, 8041–8046 (2007).

    CAS  Article  Google Scholar 

  22. Hu, Z. et al. Science 341, 172–175 (2013).

    CAS  Article  Google Scholar 

  23. Tenthorey, J. L. et al. Science 358, 888–893 (2017).

    CAS  Article  Google Scholar 

  24. Wendler, P., Ciniawsky, S., Kock, M. & Kube, S. Biochim. Biophys. Acta 1823, 2–14 (2012).

    CAS  Article  Google Scholar 

  25. Tapia-Abellán, A. et al. Nat. Chem. Biol. (2019).

  26. Mariathasan, S. et al. Nature 430, 213–218 (2004).

    CAS  Article  Google Scholar 

  27. Schroder, K. et al. Proc. Natl Acad. Sci. USA 109, E944–E953 (2012).

    CAS  Article  Google Scholar 

  28. Lomenick, B., Jung, G., Wohlschlegel, J. A. & Huang, J. Curr. Protoc. Chem. Biol. 3, 163–180 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. Pai, M. Y. et al. Methods Mol. Biol. 1263, 287–298 (2015).

    CAS  Article  Google Scholar 

  30. Xu, C. P. et al. Chem. Biol. 16, 980–989 (2009).

    CAS  Article  Google Scholar 

  31. Mackinnon, A. L. & Taunton, J. Curr. Protoc. Chem. Biol. 1, 55–73 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Stols, L. et al. Protein Expr. Purif. 25, 8–15 (2002).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Health and Medical Research Council of Australia (Fellowship 1138466 and Program Grant no. 1071659 to M.P.J.; Fellowship no. 1141131 to K.S.; Project Grant no. 1086786 to A.A.B.R. and K.S.), the Australian Research Council (Fellowship no. FT130100361 to K.S.), the Institute for Molecular Bioscience (Research Advancement Award to J.H.) and The University of Queensland (Postdoctoral Fellowships to R.C.C. and D.B.; Research Scholarship to J.H.). We thank D. Edwards for chemical purification and analytical support, M. Cooper (University of Queensland) for providing MCC950 and K. Stacey (University of Queensland) for providing ASC-deficient mice.

Author information

Authors and Affiliations



R.C.C. designed and performed most experiments. J.R.H. conceived and synthesized the photoaffinity probe and performed labeling experiments. C.J.D. and M.P.J. designed and performed SPR analysis. A.Z. designed and cloned the NLRP3 expression plasmids and mutants. D.B. expressed and purified recombinant NLRP3 and assisted with experimental design. N.L.M synthesized the photoaffinity probe. J.L.C. and J.A.F. assisted with the expression and purification of recombinant NEK7, A.A.B.R. formulated MCC950, conceived the photoaffinity probe and expressed and purified recombinant NEK7. A.A.B.R. and K.S. designed experiments and supervised the study. R.C.C and K.S wrote the manuscript, with assistance from J.R.H. and A.A.B.R. and input from all authors.

Corresponding authors

Correspondence to Rebecca C. Coll, Avril A. B. Robertson or Kate Schroder.

Ethics declarations

Competing interests

R.C.C., A.A.B.R. and K.S. are co-inventors on patent applications for NLRP3 inhibitors (WO2018215818, WO2017140778 and WO2016131098), which are licensed to Inflazome Ltd, a company headquartered in Dublin, Ireland. Inflazome is developing drugs that target the NLRP3 inflammasome to address unmet clinical needs in inflammatory disease.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–15

Reporting Summary

Supplementary Note

Synthetic Procedures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coll, R.C., Hill, J.R., Day, C.J. et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 15, 556–559 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing