Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition

Abstract

Inhibition of the NLRP3 inflammasome is a promising strategy for the development of new treatments for inflammatory diseases. MCC950 is a potent and specific small-molecule inhibitor of the NLRP3 pathway, but its molecular target is not defined. Here, we show that MCC950 directly interacts with the Walker B motif within the NLRP3 NACHT domain, thereby blocking ATP hydrolysis and inhibiting NLRP3 activation and inflammasome formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MCC950 directly interacts with NLRP3.
Fig. 2: MCC950 interacts with the NACHT domain of NLRP3.
Fig. 3: MCC950 binds non-covalently to NLRP3, proximal to the Walker B motif and blocks NLRP3 ATPase activity.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Boucher, D. et al. J. Exp. Med. 215, 827–840 (2018).

    Article  CAS  Google Scholar 

  2. Broz, P. & Dixit, V. M. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  Google Scholar 

  3. Prochnicki, T., Mangan, M. S. & Latz, E. F1000Res. 5, 1469 (2016).

    Article  Google Scholar 

  4. Guo, H., Callaway, J. B. & Ting, J. P. Nat. Med. 21, 677–687 (2015).

    Article  Google Scholar 

  5. Broderick, L. et al. Annu. Rev. Pathol. 10, 395–424 (2015).

    Article  CAS  Google Scholar 

  6. De Nardo, D., De Nardo, C. M. & Latz, E. Am. J. Pathol. 184, 42–54 (2014).

    Article  Google Scholar 

  7. Coll, R. C. et al. Nat. Med. 21, 248–255 (2015).

    Article  CAS  Google Scholar 

  8. van Hout, G. P. et al. Eur. Heart. J. 38, 828–836 (2017).

    PubMed  Google Scholar 

  9. Primiano, M. J. et al. J. Immunol. 197, 2421–2433 (2016).

    Article  CAS  Google Scholar 

  10. Kim, R. Y. et al. Am. J. Respir. Crit. Care Med. 196, 283–297 (2017).

    Article  CAS  Google Scholar 

  11. Tate, M. D. et al. Sci. Rep. 6, 27912 (2016).

    Article  CAS  Google Scholar 

  12. Kammoun, H. L. et al. Mol. Metab. 10, 66–73 (2018).

    Article  CAS  Google Scholar 

  13. Moffat, J. G. et al. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article  CAS  Google Scholar 

  14. Gross, C. J. et al. Immunity 45, 761–773 (2016).

    Article  CAS  Google Scholar 

  15. Gaidt, M. M. et al. Immunity 44, 833–846 (2016).

    Article  CAS  Google Scholar 

  16. Shi, H. et al. Nat. Immunol. 17, 250–258 (2016).

    Article  CAS  Google Scholar 

  17. White, C. S., Lawrence, C. B., Brough, D. & Rivers-Auty, J. Brain Pathol. 27, 223–234 (2017).

    Article  Google Scholar 

  18. Van Gorp, H. et al. Proc. Natl Acad. Sci. USA 113, 14384–14389 (2016).

    Article  Google Scholar 

  19. Lomenick, B. et al. Proc. Natl Acad. Sci. USA 106, 21984–21989 (2009).

    Article  CAS  Google Scholar 

  20. Schroder, K. & Tschopp, J. Cell 140, 821–832 (2010).

    Article  CAS  Google Scholar 

  21. Duncan, J. A. et al. Proc. Natl Acad. Sci. USA 104, 8041–8046 (2007).

    Article  CAS  Google Scholar 

  22. Hu, Z. et al. Science 341, 172–175 (2013).

    Article  CAS  Google Scholar 

  23. Tenthorey, J. L. et al. Science 358, 888–893 (2017).

    Article  CAS  Google Scholar 

  24. Wendler, P., Ciniawsky, S., Kock, M. & Kube, S. Biochim. Biophys. Acta 1823, 2–14 (2012).

    Article  CAS  Google Scholar 

  25. Tapia-Abellán, A. et al. Nat. Chem. Biol. https://doi.org/10.1038/s41589-019-0278-6 (2019).

  26. Mariathasan, S. et al. Nature 430, 213–218 (2004).

    Article  CAS  Google Scholar 

  27. Schroder, K. et al. Proc. Natl Acad. Sci. USA 109, E944–E953 (2012).

    Article  CAS  Google Scholar 

  28. Lomenick, B., Jung, G., Wohlschlegel, J. A. & Huang, J. Curr. Protoc. Chem. Biol. 3, 163–180 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. Pai, M. Y. et al. Methods Mol. Biol. 1263, 287–298 (2015).

    Article  CAS  Google Scholar 

  30. Xu, C. P. et al. Chem. Biol. 16, 980–989 (2009).

    Article  CAS  Google Scholar 

  31. Mackinnon, A. L. & Taunton, J. Curr. Protoc. Chem. Biol. 1, 55–73 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Stols, L. et al. Protein Expr. Purif. 25, 8–15 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council of Australia (Fellowship 1138466 and Program Grant no. 1071659 to M.P.J.; Fellowship no. 1141131 to K.S.; Project Grant no. 1086786 to A.A.B.R. and K.S.), the Australian Research Council (Fellowship no. FT130100361 to K.S.), the Institute for Molecular Bioscience (Research Advancement Award to J.H.) and The University of Queensland (Postdoctoral Fellowships to R.C.C. and D.B.; Research Scholarship to J.H.). We thank D. Edwards for chemical purification and analytical support, M. Cooper (University of Queensland) for providing MCC950 and K. Stacey (University of Queensland) for providing ASC-deficient mice.

Author information

Authors and Affiliations

Authors

Contributions

R.C.C. designed and performed most experiments. J.R.H. conceived and synthesized the photoaffinity probe and performed labeling experiments. C.J.D. and M.P.J. designed and performed SPR analysis. A.Z. designed and cloned the NLRP3 expression plasmids and mutants. D.B. expressed and purified recombinant NLRP3 and assisted with experimental design. N.L.M synthesized the photoaffinity probe. J.L.C. and J.A.F. assisted with the expression and purification of recombinant NEK7, A.A.B.R. formulated MCC950, conceived the photoaffinity probe and expressed and purified recombinant NEK7. A.A.B.R. and K.S. designed experiments and supervised the study. R.C.C and K.S wrote the manuscript, with assistance from J.R.H. and A.A.B.R. and input from all authors.

Corresponding authors

Correspondence to Rebecca C. Coll, Avril A. B. Robertson or Kate Schroder.

Ethics declarations

Competing interests

R.C.C., A.A.B.R. and K.S. are co-inventors on patent applications for NLRP3 inhibitors (WO2018215818, WO2017140778 and WO2016131098), which are licensed to Inflazome Ltd, a company headquartered in Dublin, Ireland. Inflazome is developing drugs that target the NLRP3 inflammasome to address unmet clinical needs in inflammatory disease.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–15

Reporting Summary

Supplementary Note

Synthetic Procedures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coll, R.C., Hill, J.R., Day, C.J. et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 15, 556–559 (2019). https://doi.org/10.1038/s41589-019-0277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0277-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research