Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical control of sphingosine-1-phosphate formation and function

Abstract

Sphingosine-1-phosphate (S1P) plays important roles as a signaling lipid in a variety of physiological and pathophysiological processes. S1P signals via a family of G-protein-coupled receptors (GPCRs) (S1P1–5) and intracellular targets. Here, we report on photoswitchable analogs of S1P and its precursor sphingosine, respectively termed PhotoS1P and PhotoSph. PhotoS1P enables optical control of S1P1–3, shown through electrophysiology and Ca2+ mobilization assays. We evaluated PhotoS1P in vivo, where it reversibly controlled S1P3-dependent pain hypersensitivity in mice. The hypersensitivity induced by PhotoS1P is comparable to that induced by S1P. PhotoS1P is uniquely suited for the study of S1P biology in cultured cells and in vivo because it exhibits prolonged metabolic stability compared to the rapidly metabolized S1P. Using lipid mass spectrometry analysis, we constructed a metabolic map of PhotoS1P and PhotoSph. The formation of these photoswitchable lipids was found to be light dependent, providing a novel approach to optically probe sphingolipid biology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Design, synthesis and photophysical properties of PhotoSph and PhotoS1P.
Fig. 2: Optical control of S1P1-GIRK coupling.
Fig. 3: Optical control of S1P1–5 receptor-mediated calcium release and homology modeling of S1P1–2 receptors.
Fig. 4: Optical control of nociception in DRG neurons and mice.
Fig. 5: In vitro SPHK assay.
Fig. 6: Lipid mass spectrometry analysis of PhotoSph/PhotoS1P metabolism.

Data availability

The authors declare that all relevant data supporting the findings in this study are available within this paper and the Supplementary Information files.

References

  1. Fyrst, H. & Saba, J. D. An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat. Chem. Biol. 6, 489–497 (2010).

    Article  CAS  Google Scholar 

  2. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008).

    Article  CAS  Google Scholar 

  3. Maceyka, M., Harikumar, K. B., Milstien, S. & Spiegel, S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 22, 50–60 (2012).

    Article  CAS  Google Scholar 

  4. Proia, R. L. & Hla, T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J. Clin. Invest. 125, 1379–1387 (2015).

    Article  Google Scholar 

  5. Hait, N. C. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257 (2009).

    Article  CAS  Google Scholar 

  6. Hill, R. Z. et al. The signaling lipid sphingosine-1-phosphate regulates mechanical pain. eLife 7, e33285 (2018).

    Article  Google Scholar 

  7. Mair, N. et al. Genetic evidence for involvement of neuronally expressed s1p1 receptor in nociceptor sensitization and inflammatory pain. PLoS One 6, e17268 (2011).

    Article  CAS  Google Scholar 

  8. Camprubí-Robles, M. et al. Sphingosine-1-phosphate-induced nociceptor excitation and ongoing pain behavior in mice and humans is largely mediated by S1P3 receptor. J. Neurosci. 33, 2582–2592 (2013).

    Article  Google Scholar 

  9. Kim, R. H., Takabe, K., Milstien, S. & Spiegel, S. Export and functions of sphingosine-1-phosphate. Biochim. Biophys. Acta BBA 2009, 692–696 (1791).

    Google Scholar 

  10. Książek, M., Chacińska, M., Chabowski, A. & Baranowski, M. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J. Lipid Res. 56, 1271–1281 (2015).

    Article  Google Scholar 

  11. Brinkmann, V. et al. The immune modulator FTY720 targets sphingosine-1-phosphate receptors. J. Biol. Chem. 277, 21453–21457 (2002).

    Article  CAS  Google Scholar 

  12. Chun, J. & Hartung, H.-P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol. 33, 91–101 (2010).

    Article  CAS  Google Scholar 

  13. Wenk, M. R. Lipidomics: new tools and applications. Cell 143, 888–895 (2010).

    Article  CAS  Google Scholar 

  14. Wenk, M. R. The emerging field of lipidomics. Nat. Rev. Drug Discov. 4, 594–610 (2005).

    Article  CAS  Google Scholar 

  15. Schwarzmann, G., Arenz, C. & Sandhoff, K. Labeled chemical biology tools for investigating sphingolipid metabolism, trafficking and interaction with lipids and proteins. Biochim. Biophys. Acta BBA 2014, 1161–1173 (1841).

    Google Scholar 

  16. Haberkant, P. & Holthuis, J. C. M. Fat & fabulous: bifunctional lipids in the spotlight. Biochim. Biophys. Acta BBA 1841, 1022–1030 (2014).

    Article  CAS  Google Scholar 

  17. Höglinger, D., Nadler, A. & Schultz, C. Caged lipids as tools for investigating cellular signaling. Biochim. Biophys. Acta BBA 1841, 1085–1096 (2014).

    Article  Google Scholar 

  18. Feng, S. et al. Mitochondria-specific photoactivation to monitor local sphingosine metabolism and function. eLife 7, e34555 (2018).

    Article  Google Scholar 

  19. Broichhagen, J., Frank, J. A. & Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res. 48, 1947–1960 (2015).

    Article  CAS  Google Scholar 

  20. Frank, J. A., Moroni, M., Moshourab, R., Sumser, M. & Lewin, G. R. Photoswitchable fatty acids enable optical control of TRPV1. Nat Commun. 6, 7118 (2015).

    Article  Google Scholar 

  21. Leinders-Zufall, T. et al. PhoDAGs enable optical control of diacylglycerol-sensitive transient receptor potential channels. Cell Chem. Biol. 25, 215–223.e3 (2017).

    Article  Google Scholar 

  22. Frank, J. A. et al. Optical control of GPR40 signalling in pancreatic β-cells. Chem. Sci. 8, 7604–7610 (2017).

    Article  CAS  Google Scholar 

  23. Lichtenegger, M. et al. An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nat. Chem. Biol. 14, 396–404 (2018).

    Article  CAS  Google Scholar 

  24. Frank, J. A., Franquelim, H. G., Schwille, P. & Trauner, D. Optical control of lipid rafts with photoswitchable ceramides. J. Am. Chem. Soc. 138, 12981–12986 (2016).

    Article  CAS  Google Scholar 

  25. Pernpeintner, C. et al. Light-controlled membrane mechanics and shape transitions of photoswitchable lipid vesicles. Langmuir 33, 4083–4089 (2017).

    Article  CAS  Google Scholar 

  26. Frank, J. A. et al. Photoswitchable diacylglycerols enable optical control of protein kinase C. Nat. Chem. Biol. 12, 755–762 (2016).

    Article  CAS  Google Scholar 

  27. Hüll, K., Morstein, J. & Trauner, D. In vivo photopharmacology. Chem. Rev. 118, 10710–10747 (2018).

    Article  Google Scholar 

  28. Bünemann, M. et al. A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine-1-phosphate in atrial myocytes. EMBO J. 15, 5527–5534 (1996).

    Article  Google Scholar 

  29. Troupiotis-Tsaïlaki, A. et al. Ligand chain length drives activation of lipid G protein-coupled receptors. Sci. Rep. 7, 2020 (2017).

    Article  Google Scholar 

  30. Jeffery, T. Palladium-catalysed arylation of allylic alcohols: highly selective synthesis of β-aromatic carbonyl compounds or β-aromatic α,β-unsaturated alcohols. Tetrahedron Lett. 32, 2121–2124 (1991).

    Article  CAS  Google Scholar 

  31. Yamamoto, T., Hasegawa, H., Hakogi, T. & Katsumura, S. Versatile synthetic method for sphingolipids and functionalized sphingosine derivatives via olefin cross metathesis. Org. Lett. 8, 5569–5572 (2006).

    Article  CAS  Google Scholar 

  32. Lim, H.-S., Oh, Y.-S., Suh, P.-G. & Chung, S.-K. Syntheses of sphingosine-1-phosphate stereoisomers and analogues and their interaction with EDG receptors. Bioorg. Med. Chem. Lett. 13, 237–240 (2003).

    Article  CAS  Google Scholar 

  33. Chan, K. W., Sui, J.-L., Vivaudou, M. & Logothetis, D. E. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc. Natl Acad. Sci. USA 93, 14193–14198 (1996).

    Article  CAS  Google Scholar 

  34. Atwood, B. K., Lopez, J., Wager-Miller, J., Mackie, K. & Straiker, A. Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics 12, 14 (2011).

    Article  CAS  Google Scholar 

  35. Valentine, W. J. & Tigyi, G. in Sphingosine-1-Phosphate: Methods in Molecular Biology Vol. 874 (eds Pébay, A. & Turksen, K.) (Humana Press, 2012).

  36. Rios Candelore, M. et al. Phytosphingosine-1-phosphate: a high affinity ligand for the S1P4/Edg-6 receptor. Biochem. Biophys. Res. Commun. 297, 600–606 (2002).

    Article  CAS  Google Scholar 

  37. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  Google Scholar 

  38. Hill, R. Z., Morita, T., Brem, R. B. & Bautista, D. M. S1PR3 mediates itch and pain via distinct TRP channel-dependent pathways. J. Neurosci. 38, 7833–7843 (2018).

    Article  CAS  Google Scholar 

  39. Harayama, T. & Riezman, H. Detection of genome-edited mutant clones by a simple competition-based PCR method. PLoS One 12, e0179165 (2017).

    Article  Google Scholar 

  40. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    Article  CAS  Google Scholar 

  41. Han, X., Yang, K. & Gross, R. W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 31, 134–178 (2012).

    Article  CAS  Google Scholar 

  42. Flock, T. et al. Selectivity determinants of GPCR–G-protein binding. Nature 545, 317–322 (2017).

    Article  CAS  Google Scholar 

  43. Weth-Malsch, D. et al. Ablation of sphingosine 1-phosphate receptor subtype 3 impairs hippocampal neuron excitability in vitro and spatial working memory in vivo. Front. Cell. Neurosci. 10, 258 (2016).

    Article  Google Scholar 

  44. Alvarez, S. E. et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465, 1084–1088 (2010).

    Article  CAS  Google Scholar 

  45. Takasugi, N. et al. BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. J. Neurosci. 31, 6850–6857 (2011).

    Article  CAS  Google Scholar 

  46. Molecular Operating Environment (MOE) v.2013.08 (Chemical Computing Group ULC, 2018).

  47. Berman, H. M. et al. The protein data bank. Acta Crystallogr. 58, 899–907 (2002).

    Google Scholar 

  48. Hanson, M. A. et al. Crystal structure of a lipid G protein-coupled receptor. Science 335, 851–855 (2012).

    Article  CAS  Google Scholar 

  49. Inagaki, Y. et al. Sphingosine-1-phosphate analogue recognition and selectivity at S1P4 within the endothelial differentiation gene family of receptors. Biochem. J. 389, 187–195 (2005).

    Article  CAS  Google Scholar 

  50. Wang, D. A. et al. A single amino acid determines lysophospholipid specificity of the S1P1 (EDG1) and LPA1 (EDG2) phospholipid growth factor receptors. J. Biol. Chem. 276, 49213–49220 (2001).

    Article  CAS  Google Scholar 

  51. Wilson, S. R. et al. TRPA1 Is required for histamine-independent, MAS-related G protein-coupled receptor-mediated itch. Nat. Neurosci. 14, 595–602 (2011).

    Article  CAS  Google Scholar 

  52. Guan, X. L. et al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol. Biol. Cell 20, 2083–2095 (2009).

    Article  CAS  Google Scholar 

  53. da Silveira dos Santos, A. X. et al. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol. Biol. Cell 25, 3234–3246 (2014).

    Article  Google Scholar 

  54. Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49, 1137–1146 (2008).

    Article  CAS  Google Scholar 

  55. Liao, S., Tammaro, M. & Yan, H. Enriching CRISPR-Cas9 targeted cells by co-targeting the HPRT gene. Nucleic Acids Res. 43, e134 (2015).

    Article  Google Scholar 

  56. Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

J.M. thanks the German Academic Scholarship Foundation (Studienstiftung) for a PhD Fellowship. J.M. and A.J.E.N. thank New York University for MacCracken PhD fellowships. T.H. was supported by the Japan Society for the Promotion of Science Postdoctoral Fellowships for Research Abroad. D.D.N. and G.Y.T. were supported by NCI grant No. CA092160. H.R. was supported by Sinergia, the Swiss National Science Foundation (No. CRSII3-154405) and the NCCR Chemical Biology funded by the Swiss National Science Foundation (No. 51NF40-160589). D.M.B was supported by NIH grants Nos. AR059385 and NS077224, and by an HHMI Faculty Scholar Award. E.Y.I. was supported by NIH grant 1U01MH109069-01. We thank B. Hetzler for critical discussion of the photophysical characterization and C. Lin for assistance with NMR experiments. S. Lee is acknowledged for performing TNA-α assays with PhotoS1P on S1P receptor subtypes (data not included).

Author information

Authors and Affiliations

Authors

Contributions

J.M. and D.T. designed and coordinated the study with critical input from all authors. A.J.E.N. performed chemical synthesis with input from B.M.W. P.C.D. and J.M. performed electrophysiology experiments under supervision by E.Y.I. and with input from J.A.F. D.D.N. and J.M. performed Ca2+ mobilization experiments under supervision by G.J.T. A.L.P. performed receptor homology modeling and docking experiments. R.Z.H. performed DRG neuronal Ca2+ imaging and in vivo pain physiology experiments under supervision by D.B. J.M. performed SphK assays. S.F. performed lipid mass spectrometry analysis. T.H. performed whole-lipidome analysis. T.H. generated CRISPR KO cell lines under supervision by H.R. J.M. and D.T. wrote the manuscript with critical input from all authors.

Corresponding author

Correspondence to Dirk Trauner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Results

Supplementary Tables 1 and 2, Supplementary Figs. 1–12

Reporting Summary

Supplementary Note

Synthetic Procedures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morstein, J., Hill, R.Z., Novak, A.J.E. et al. Optical control of sphingosine-1-phosphate formation and function. Nat Chem Biol 15, 623–631 (2019). https://doi.org/10.1038/s41589-019-0269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0269-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing