Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic assembly of protein disulfide isomerase in catalysis of oxidative folding

Abstract

Time-resolved direct observations of proteins in action provide essential mechanistic insights into biological processes. Here, we present mechanisms of action of protein disulfide isomerase (PDI)—the most versatile disulfide-introducing enzyme in the endoplasmic reticulum—during the catalysis of oxidative protein folding. Single-molecule analysis by high-speed atomic force microscopy revealed that oxidized PDI is in rapid equilibrium between open and closed conformations, whereas reduced PDI is maintained in the closed state. In the presence of unfolded substrates, oxidized PDI, but not reduced PDI, assembles to form a face-to-face dimer, creating a central hydrophobic cavity with multiple redox-active sites, where substrates are likely accommodated to undergo accelerated oxidative folding. Such PDI dimers are diverse in shape and have different lifetimes depending on substrates. To effectively guide proper oxidative protein folding, PDI regulates conformational dynamics and oligomeric states in accordance with its own redox state and the configurations or folding states of substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Redox-dependent regulation of PDI dynamics.
Fig. 2: Significance of redox-dependent regulation of PDI dynamics in catalysis of oxidative protein folding.
Fig. 3: Unfolded substrate-induced dimerization of oxidized PDI.
Fig. 4: Structural diversity of substrate-induced PDI dimers.
Fig. 5: Physiological significance of PDI dimers in oxidative folding of BPTI.
Fig. 6: PDI dimerization induced by unfolded RNase A.

Similar content being viewed by others

Data availability

None of the data in this paper have been deposited in public databases. All data in this study are available upon reasonable request.

References

  1. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Sato, Y. & Inaba, K. Disulfide bond formation network in the three biological kingdoms, bacteria, fungi and mammals. FEBS J. 279, 2262–2271 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Bulleid, N. J. & Ellgaard, L. Multiple ways to make disulfides. Trends Biochem. Sci. 36, 485–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, Y. et al. SPD—a web-based secreted protein database. Nucleic Acids Res. 33, D169–D173 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Arolas, J. L., Aviles, F. X., Chang, J. Y. & Ventura, S. Folding of small disulfide-rich proteins: clarifying the puzzle. Trends Biochem. Sci. 31, 292–301 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Okumura, M., Shimamoto, S. & Hidaka, Y. Chemical methods for producing disulfide bonds in peptides and proteins to study folding regulation. Curr. Protoc. Protein Sci. 76, 7.1–7.13 (2014).

    Google Scholar 

  7. Weissman, J. S. & Kim, P. S. Reexamination of the folding of BPTI: predominance of native intermediates. Science 253, 1386–1393 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Uehara, T. et al. S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Hoffstrom, B. G. et al. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nat. Chem. Biol. 6, 900–906 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woehlbier, U. et al. ALS-linked protein disulfide isomerase variants cause motor dysfunction. EMBO J. 35, 845–865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okumura, M., Kadokura, H. & Inaba, K. Structures and functions of protein disulfide isomerase family members involved in proteostasis in the endoplasmic reticulum. Free Radic. Biol. Med. 83, 314–322 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Hatahet, F. & Ruddock, L. W. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid. Redox Signal. 11, 2807–2850 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Lyles, M. M. & Gilbert, H. F. Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer. Biochemistry 30, 613–619 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. van den Berg, B., Chung, E. W., Robinson, C. V., Mateo, P. L. & Dobson, C. M. The oxidative refolding of hen lysozyme and its catalysis by protein disulfide isomerase. EMBO J. 18, 4794–4803 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weissman, J. S. & Kim, P. S. Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature 365, 185–188 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Kojima, R. et al. Radically different thioredoxin domain arrangement of ERp46, an efficient disulfide bond introducer of the mammalian PDI family. Structure 22, 431–443 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Sato, Y. et al. Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding. Sci. Rep. 3, 2456 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Inaba, K. et al. Crystal structures of human Ero1α reveal the mechanisms of regulated and targeted oxidation of PDI. EMBO J. 29, 3330–3343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kanemura, S. et al. Human ER oxidoreductin-1α (Ero1α) undergoes dual regulation through complementary redox interactions with protein-disulfide isomerase. J. Biol. Chem. 291, 23952–23964 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masui, S., Vavassori, S., Fagioli, C., Sitia, R. & Inaba, K. Molecular bases of cyclic and specific disulfide interchange between human ERO1α protein and protein-disulfide isomerase (PDI). J. Biol. Chem. 286, 16261–16271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, L. et al. Reconstitution of human Ero1-Lα/protein-disulfide isomerase oxidative folding pathway in vitro. Position-dependent differences in role between the a and aʹ domains of protein-disulfide isomerase. J. Biol. Chem. 284, 199–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Edman, J. C., Ellis, L., Blacher, R. W., Roth, R. A. & Rutter, W. J. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317, 267–270 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Klappa, P., Ruddock, L. W., Darby, N. J. & Freedman, R. B. The bʹ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 17, 927–935 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tian, G., Xiang, S., Noiva, R., Lennarz, W. J. & Schindelin, H. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124, 61–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Tian, G. et al. The catalytic activity of protein-disulfide isomerase requires a conformationally flexible molecule. J. Biol. Chem. 283, 33630–33640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okumura, M. et al. Inhibition of the functional interplay between endoplasmic reticulum (ER) oxidoreduclin-1α (Ero1α) and protein-disulfide isomerase (PDI) by the endocrine disruptor bisphenol A. J. Biol. Chem. 289, 27004–27018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, C. et al. Structural insights into the redox-regulated dynamic conformations of human protein disulfide isomerase. Antioxid. Redox Signal. 19, 36–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Serve, O. et al. Redox-dependent domain rearrangement of protein disulfide isomerase coupled with exposure of its substrate-binding hydrophobic surface. J. Mol. Biol. 396, 361–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Tsai, B., Rodighiero, C., Lencer, W. I. & Rapoport, T. A. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104, 937–948 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Lumb, R. A. & Bulleid, N. J. Is protein disulfide isomerase a redox-dependent molecular chaperone? EMBO J. 21, 6763–6770 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cho, K. et al. Redox-regulated peptide transfer from the transporter associated with antigen processing to major histocompatibility complex class I molecules by protein disulfide isomerase. Antioxid. Redox Signal. 15, 621–633 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Kosuri, P. et al. Protein folding drives disulfide formation. Cell 151, 794–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333, 755–758 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Uchihashi, T., Kodera, N. & Ando, T. Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat. Protoc. 7, 1193–1206 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Noi, K. et al. High-speed atomic force microscopic observation of ATP-dependent rotation of the AAA + chaperone p97. Structure 21, 1992–2002 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Irvine, A. G. et al. Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway. PLoS ONE 9, e82511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ido, H. et al. The requirement of the glutamic acid residue at the third position from the carboxyl termini of the laminin gamma chains in integrin binding by laminins. J. Biol. Chem. 282, 11144–11154 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Bastos-Aristizabal, S., Kozlov, G. & Gehring, K. Structural insight into the dimerization of human protein disulfide isomerase. Protein Sci. 23, 618–626 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wallis, A. K. et al. The ligand-binding bʹ domain of human protein disulphide-isomerase mediates homodimerization. Protein Sci. 18, 2569–2577 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maegawa, K. I. et al. The highly dynamic nature of ERdj5 is key to efficient elimination of aberrant protein oligomers through ER-associated degradation. Structure 25, 846–857.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Wendel, M., Lorenz, H. & Kotthaus, J. P. Sharpened electron beam deposited tips for high resolution atomic force microscope lithography and imaging. Appl. Phys. Lett. 67, 3732–3734 (1995).

    Article  CAS  Google Scholar 

  43. Rodrı́guez, T. R. & Garcı́a, R. Theory of Q control in atomic force microscopy. Appl. Phys. Lett. 82, 4821–4823 (2003).

    Article  CAS  Google Scholar 

  44. Akiyama, S. Quality control of protein standards for molecular mass determinations by small-angle X-ray scattering. J. Appl. Crystallogr. 43, 237–243 (2010).

    Article  CAS  Google Scholar 

  45. Svergun, D. Mathematical methods in small-angle scattering data analysis. J. Appl. Crystallogr. 24, 485–492 (1991).

    Article  CAS  Google Scholar 

  46. Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

  47. Kinoshita, M. et al. Physicochemical nature of interfaces controlling ferredoxin NADP+ reductase activity through its interprotein interactions with ferredoxin. Biochim. Biophys. Acta 1847, 1200–1211 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Saio, T., Guan, X., Rossi, P., Economou, A. & Kalodimos, C. G. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344, 1250494 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).

    Article  Google Scholar 

Download references

Acknowledgements

Synchrotron radiation experiments were performed on BL45XU in SPring-8 with the approval of RIKEN (proposal no. 2014A1345). We are grateful to M. Matsusaki, S. Kanbayashi and S. Ogawa for their experimental assistance. This work was supported by funding from CREST (to T.O. (JPMJCR13M1) and K.I. (JPMJCR13M6)), Grant-in-Aids for Scientific Research on Innovative Areas from MEXT (to K.I. (26116005) and M.O. (15641922)), the Takeda Science Foundation (to K.I. and M.O.), the Uehara Memorial Foundation (to K.I. and M.O.), the Naito Foundation (to M.O.), a Grant-in-Aid for JSPS Fellows (to M.O. and K.S.), the Building of Consortia for the Development of Human Resources in Science and Technology (to M.O.), the program of the Joint Usage/Research Center for Developmental Medicine (IMEG, Kumamoto University) (to M.O. and K.I.), and the Nanotechnology Platform Program (Molecule and Material Synthesis) of MEXT (to M.O., S.K., S.A. and K.I.).

Author information

Authors and Affiliations

Authors

Contributions

M.O. designed and performed almost all experiments including the SAXS, HS-AFM and oxidative protein folding experiments. K.N. performed AFM measurements, and analyzed the HS-AFM data. S.K. performed SAXS experiments. M.K. performed ITC experiments and statistical analysis using AIC scores. T.S. performed SEC-MALS experiments. Y.I. analyzed the AFM images. T.H. assisted the SAXS experiment. S.A. analyzed the SAXS data. T.O. assisted with HS-AFM experiments and reviewed the manuscript. K.I. supervised the study. K.I. and M.O. wrote the manuscript. M.O. prepared figures. All authors discussed the results and approved the manuscript.

Corresponding authors

Correspondence to Masaki Okumura, Teru Ogura or Kenji Inaba.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figs. 1–14 and Supplementary Video legends.

Reporting Summary

Supplementary Video 1

HS-AFM movies showing closed conformations of the reduced form of PDI.

Supplementary Video 2

HS-AFM movies showing conformational dynamics of oxidized PDI.

Supplementary Video 3

HS-AFM movies showing transient dimerization of PDI in the presence of reduced and denatured BPTI.

Supplementary Video 4

High-speed AFM movies showing long-lived and transformable PDI dimers in the presence of reduced and denatured RNase A

Supplementary Video 5

HS-AFM movies showing two PDI dimers bound to Cys-blocked plasminogen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okumura, M., Noi, K., Kanemura, S. et al. Dynamic assembly of protein disulfide isomerase in catalysis of oxidative folding. Nat Chem Biol 15, 499–509 (2019). https://doi.org/10.1038/s41589-019-0268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0268-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing