Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

An orange calcium-modulated bioluminescent indicator for non-invasive activity imaging

Abstract

Fluorescent indicators are used widely to visualize calcium dynamics downstream of membrane depolarization or G-protein-coupled receptor activation, but are poorly suited for non-invasive imaging in mammals. Here, we report a bright calcium-modulated bioluminescent indicator named Orange CaMBI (Orange Calcium-modulated Bioluminescent Indicator). Orange CaMBI reports calcium dynamics in single cells and, in the context of a transgenic mouse, reveals calcium oscillations in whole organs in an entirely non-invasive manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CaMBI characteristics and imaging of calcium activity with Orange CaMBI reporters.
Fig. 2: Non-invasive calcium imaging in the liver of a live mouse with Orange CaMBI.

Similar content being viewed by others

Data availability

Nucleotide sequences are available at GenBank for Orange CaMBI 110 (MK558047), Orange CaMBI 300 (MK558048), Blue CaMBI (MK558049), and Green CaMBI (MK558050). Mammalian expression plasmids are available at Addgene for Orange CaMBI 110 (124094), Orange CaMBI 300 (124095), Blue CaMBI (124096), and Green CaMBI (124097). All other data from this study are available from the corresponding author upon request.

References

  1. Clapham, D. E. Cell 131, 1047–1058 (2007).

    Article  CAS  Google Scholar 

  2. Russell, J. T. Br. J. Pharmacol. 163, 1605–1625 (2011).

    Article  CAS  Google Scholar 

  3. Tsien, R. Y., Ernst, L. & Waggoner, A. in Handbook Of Biological Confocal Microscopy (ed. Pawley, J.) 338–352 (Springer, 2006).

  4. Chu, J. et al. Nat. Methods 11, 572–578 (2014).

    Article  CAS  Google Scholar 

  5. Lin, M. Z. et al. Chem. Biol. 16, 1169–1179 (2009).

    Article  CAS  Google Scholar 

  6. Zhao, H. et al. J. Biomed. Opt. 10, 41210 (2005).

    Article  Google Scholar 

  7. Wang, A., Feng, J., Li, Y. & Zou, P. ACS Chem. Neurosci. 9, 639–650 (2018).

    Article  CAS  Google Scholar 

  8. Martin, J. R. J. Neurogenet. 22, 285–307 (2008).

    Article  Google Scholar 

  9. Bakayan, A., Domingo, B., Miyawaki, A. & Llopis, J. Pflugers Arch. 467, 2031–2042 (2015).

    Article  CAS  Google Scholar 

  10. Shimomura, O., Kishi, Y. & Inouye, S. Biochem. J. 296, 549–551 (1993).

    Article  CAS  Google Scholar 

  11. Hoshino, H., Nakajima, Y. & Ohmiya, Y. Nat. Methods 4, 637–639 (2007).

    Article  CAS  Google Scholar 

  12. Saito, K. et al. Nat. Commun. 3, 1262 (2012).

    Article  Google Scholar 

  13. Chu, J. et al. Nat. Biotechnol. 34, 760–767 (2016).

    Article  CAS  Google Scholar 

  14. Suzuki, K. et al. Nat. Commun. 7, 13718 (2016).

    Article  CAS  Google Scholar 

  15. Horikawa, K. et al. Nat. Methods 7, 729–732 (2010).

    Article  CAS  Google Scholar 

  16. Chen, T. W. et al. Nature 499, 295–300 (2013).

    Article  CAS  Google Scholar 

  17. Yang, J. et al. Nat. Commun. 7, 13268 (2016).

    Article  Google Scholar 

  18. Reddy, R. et al. J. Biol. Chem. 270, 14340–14346 (1995).

    Article  CAS  Google Scholar 

  19. Stanika, R. I., Villanueva, I., Kazanina, G., Andrews, S. B. & Pivovarova, N. B. J. Neurosci. 32, 6642–6650 (2012).

    Article  CAS  Google Scholar 

  20. Gaspers, L. D., Pierobon, N. & Thomas, A. P. in Signaling Pathways in Liver Diseases (eds Dufour, J. F., Clavien, P. A., Trautwein, C. & Graf, R.) 211–221 (Springer, 2005).

  21. Dupont, G., Combettes, L. & Leybaert, L. Int. Rev. Cytol. 261, 193–245 (2007).

    Article  CAS  Google Scholar 

  22. Kuo, I. Y. & Ehrlich, B. E. Cold Spring Harb. Perspect. Biol. 7, a006023 (2015).

    Article  Google Scholar 

  23. Penn, R. B. & Benovic, J. L. Proc. Am. Thorac. Soc. 5, 47–57 (2008).

    Article  CAS  Google Scholar 

  24. Kono, M. et al. Nat. Commun. 8, 1163 (2017).

    Article  Google Scholar 

  25. Takakura, H., Hattori, M., Takeuchi, M. & Ozawa, T. ACS Chem. Biol. 7, 901–910 (2012).

    Article  CAS  Google Scholar 

  26. Kim, D. E., Chivian, D. & Baker, D. Nucleic Acids Res. 32, W526–W531 (2004).

    Article  CAS  Google Scholar 

  27. Zhang, Y. BMC Bioinformatics 9, 40 (2008).

    Article  Google Scholar 

  28. Tsien, R. & Pozzan, T. Methods Enzymol. 172, 230–262 (1989).

    Article  CAS  Google Scholar 

  29. Wilkins, M. R. et al. Methods Mol. Biol. 112, 531–552 (1999).

    CAS  PubMed  Google Scholar 

  30. Schindelin, J. et al. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  31. Bajar, B. T. et al. Sci. Rep. 6, 20889 (2016).

    Article  CAS  Google Scholar 

  32. Lam, A. J. et al. Nat. Methods 9, 1005–1012 (2012).

    Article  CAS  Google Scholar 

  33. Burridge, P. W. et al. Nat. Methods 11, 855–860 (2014).

    Article  CAS  Google Scholar 

  34. Tasic, B. et al. Proc. Natl Acad. Sci. USA 108, 7902–7907 (2011).

    Article  CAS  Google Scholar 

  35. Fiebig, T. et al. PLoS One 7, e31179 (2012).

  36. Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. Behav. Res. Methods 39, 175–191 (2007).

    Article  Google Scholar 

  37. Chuong, A. S. et al. Nat. Neurosci. 17, 1123–1129 (2014).

    Article  CAS  Google Scholar 

  38. Horton, N. G. et al. Nat. Photon. 7, 205–209 (2013).

  39. Podgorski, K. & Ranganathan, G. J. Neurophysiol. 116, 1012–1023 (2016).

    Article  CAS  Google Scholar 

  40. Levin, R. A. et al. PLoS ONE 9, e97415 (2014).

    Article  Google Scholar 

  41. Sarkar, S., Malekshah, O. M., Nomani, A., Patel, N. & Hatefi, A. Cancer Med. 7, 3630–3641 (2018).

    Article  CAS  Google Scholar 

  42. Baklaushev, V. P. et al. Sci. Rep. 7, 7715 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Lin laboratory for assistance with experiments, and the Stanford Transgenic, Knockout, and Tumor Model Center for generating the Orange 110 CaMBI transgenic mice. This work was supported by an AHA Postdoctoral Fellowship (to N.K.), an AHA Innovation Grant 15IRG23290018 (to M.Z.L.), a Stanford Discovery Innovation Award (to M.Z.L. and Y.P.), NIH grants R01HL133272 (to J.C.W.), R01HL128170 (to J.C.W.), U01HL099776 (to J.C.W.), and U01NS090600 (to M.Z.L.); NIH fellowship F32HL119059 (to N.K.P.); and NIH Pioneer Award 5DP1GM111003 (to M.Z.L.).

Author information

Authors and Affiliations

Authors

Contributions

Y.O. developed CaMBIs, characterized CaMBI properties, performed cellular and animal experiments, performed analysis, and co-wrote the manuscript. Y.P. characterized CaMBI properties, generated trangenic mice, performed cellular and animal experiments, and performed analysis. J.C. and N.K. performed additional characterization of CaMBIs. H.W. assisted in culture of cardiomyocytes. N.K.P. and L.L. assisted with animal experiments. M.A.K. and J.C.W. provided training and advice. M.Z.L. designed experiments, performed analysis, provided training and advice, and co-wrote the manuscript.

Corresponding author

Correspondence to Michael Z. Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Supplementary Figures 1–8

Reporting Summary

Supplementary Video 1

Histamine-induced calcium oscillations in HeLa cells reported by Orange CaMBI 110. Time-lapse images of the cells in Supplementary Fig. 4a are shown.

Supplementary Video 2

Histamine-induced calcium oscillations in HeLa cells reported by Green CaMBI 110. Time-lapse images of the cells in Supplementary Fig. 4b are shown.

Supplementary Video 3

Spontaneous calcium oscillations in a cardiomyocyte reported by Orange CaMBI 110. Time-lapse images of the cells in Fig. 1d are shown.

Supplementary Video 4

Spontaneous calcium oscillations in neurons reported by Orange CaMBI 110. Time-lapse images of the cells in Fig. 1e are shown.

Supplementary Video 5

Spontaneous calcium oscillations in neurons reported by Orange CaMBI 300. Time-lapse images of the cells in Supplementary Fig. 4e are shown.

Supplementary Video 6

Noninvasive imaging of vasopressin-induced calcium oscillations in mouse liver by Orange CaMBI 110 with expression gated by viral-transduced cre. Time-lapse images of the mouse in Fig. 2 are shown.

Supplementary Video 7

Noninvasive imaging of vasopressin-induced calcium oscillations in mouse liver by Orange CaMBI 110 with expression gated by an albumin-cre transgene. Time-lapse images of the mouse in Supplementary Fig. 8 are shown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y., Park, Y., Cho, J.H. et al. An orange calcium-modulated bioluminescent indicator for non-invasive activity imaging. Nat Chem Biol 15, 433–436 (2019). https://doi.org/10.1038/s41589-019-0256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0256-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing