Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy

Abstract

The isomerization of neopinone to codeinone is a critical step in the biosynthesis of opiate alkaloids in opium poppy. Previously assumed to be spontaneous, the process is in fact catalyzed enzymatically by neopinone isomerase (NISO). Without NISO the primary metabolic products in the plant, in engineered microbes and in vitro are neopine and neomorphine, which are structural isomers of codeine and morphine, respectively. Inclusion of NISO in yeast strains engineered to convert thebaine to natural or semisynthetic opiates dramatically enhances formation of the desired products at the expense of neopine and neomorphine accumulation. Along with thebaine synthase, NISO is the second member of the pathogenesis-related 10 (PR10) protein family recently implicated in the enzymatic catalysis of a presumed spontaneous conversion in morphine biosynthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Characterized pathways for the conversion of thebaine to morphine in opium poppy.
Fig. 2: Screening of pathogenesis-related 10 (PR10) and major latex proteins (MLP) for neopinone isomerase activity.
Fig. 3: Time-course assays with codeinone or codeine incubated with COR-B alone or coupled with NISO.
Fig. 4: COR-B and NISO stoichiometry affects the production of neopine.
Fig. 5: Suppression of NISO transcript levels alters the accumulation of opiate alkaloids in opium poppy.
Fig. 6: NISO improves the production of codeine and hydrocodone in engineered yeast strains.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The sequences reported in this paper have been deposited in the GenBank database with accession numbers MH455205 (NISO) and MH094273 (genomic scaffold).

References

  1. 1.

    Hagel, J. M. & Facchini, P. J. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol. 54, 647–672 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Rinner, U. & Hudlicky, T. Synthesis of morphine alkaloids and derivatives. Top. Curr. Chem. 309, 33–66 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Seth, P., Rudd, R. A., Noonan, R. K. & Haegerich, T. M. Quantifying the epidemic of prescription opioid overdose deaths. Am. J. Public Health 108, 500–502 (2018).

    Article  Google Scholar 

  4. 4.

    Clark, A. K., Wilder, C. M. & Winstanley, E. L. A systematic review of community opioid overdose prevention and naloxone distribution programs. J. Addict. Med. 8, 153–163 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1100 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Fossati, E., Narcross, L., Ekins, A., Falgueyret, J. P. & Martin, V. J. J. Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS One 10, e0124459 (2015).

    Article  Google Scholar 

  7. 7.

    Horn, J. S., Paul, A. G. & Rapoport, H. Biosynthetic conversion of thebaine to codeinone. Mechanism of ketone formation from enol ether in vivo. J. Am. Chem. Soc. 100, 1895–1898 (1978).

    CAS  Article  Google Scholar 

  8. 8.

    Hagel, J. M. & Facchini, P. J. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat. Chem. Biol. 6, 273–275 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Gollwitzer, J., Lenz, R., Hampp, N. & Zenk, M. H. The transformation of neopinone to codeinone in morphine biosynthesis proceeds non-enzymatically. Tetrahedr. Lett. 34, 5703–5706 (1993).

    CAS  Article  Google Scholar 

  10. 10.

    Lenz, R. & Zenk, M. H. Stereoselective reduction of codeinone, the penultimate enzymic step during morphine biosynthesis in Papaver somniferum. Tetrahedr. Lett. 36, 2449–2452 (1995).

    CAS  Article  Google Scholar 

  11. 11.

    Unterlinner, B., Lenz, R. & Kutchan, T. M. Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J. 18, 465–475 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    Dastmalchi, M., Chang, L., Torres, M. A., Ng, K. K. S. & Facchini, P. J. Codeinone reductase isoforms with differential stability, efficiency and product selectivity in opium poppy. Plant J. https://doi.org/10.1111/tpj.13975 (2018).

  13. 13.

    Thodey, K., Galanie, S. & Smolke, C. D. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat. Chem. Biol. 10, 837–844 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Chen, X. et al. A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis. Nat. Chem. Biol. 14, 738–743 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Bruce, N. C., Wilmot, C. J., Jordan, K. N., Stephens, L. D. & Lowe, C. R. Microbial degradation of the morphine alkaloids. Purification and characterization of morphine dehydrogenase from Pseudomonas putida M10. Biochem. J. 274, 875–880 (1991).

    CAS  Article  Google Scholar 

  16. 16.

    French, C. E. & Bruce, N. C. Purification and characterization of morphinone reductase from Pseudomonas putida M10. Biochem. J. 301, 97–103 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    French, C. E. et al. Biological production of semisynthetic opiates using genetically engineered bacteria. Biotechnology 13, 674–676 (1995).

    CAS  PubMed  Google Scholar 

  18. 18.

    Parker, H. I., Blaschke, G. & Rapoport, H. Biosynthetic conversion of thebaine to codeine. J. Am. Chem. Soc. 94, 1276–1282 (1972).

    CAS  Article  Google Scholar 

  19. 19.

    Nielsen, B., Röe, J. & Brochmann-Hanssen, E. Oripavine - a new opium alkaloid. Planta Med. 48, 205–206 (1983).

    CAS  Article  Google Scholar 

  20. 20.

    Ilari, A. et al. Structural basis of enzymatic (S)-norcoclaurine biosynthesis. J. Biol. Chem. 284, 897–904 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Chwastyk, M., Jaskolski, M. & Cieplak, M. Structure-based analysis of thermodynamic and mechanical properties of cavity-containing proteins–case study of plant pathogenesis-related proteins of class 10. FEBS J. 281, 416–429 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Kofler, S. et al. Stabilization of the dimeric birch pollen allergen Bet v 1 impacts its immunological properties. J. Biol. Chem. 289, 540–551 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Yan, Q., Qi, X., Jiang, Z., Yang, S. & Han, L. Characterization of a pathogenesis-related class 10 protein (PR-10) from Astragalus mongholicus with ribonuclease activity. Plant Physiol. Biochem. 46, 93–99 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    Pollack, R. M. Enzymatic mechanisms for catalysis of enolization: ketosteroid isomerase. Bioorg. Chem. 32, 341–353 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    Gates, M. The conversion of codeinone to codeine. J. Am. Chem. Soc. 75, 4340–4341 (1953).

    CAS  Article  Google Scholar 

  26. 26.

    Onoyovwe, A. et al. Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers. Plant Cell 25, 4110–4122 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Millgate, A. G. et al. Analgesia: morphine-pathway block in top1 poppies. Nature 431, 413–414 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    Casañal, A. et al. The strawberry pathogenesis-related 10 (PR-10) Fra a proteins control flavonoid biosynthesis by binding to metabolic intermediates. J. Biol. Chem. 288, 35322–35332 (2013).

    Article  Google Scholar 

  29. 29.

    Clifton, B. E. et al. Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein. Nat. Chem. Biol. 14, 542–547 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Kaltenbach, M. et al. Evolution of chalcone isomerase from a noncatalytic ancestor. Nat. Chem. Biol. 14, 548–555 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Desgagné-Penix, I. & Facchini, P. J. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant J. 72, 331–344 (2012).

    Article  Google Scholar 

  32. 32.

    Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32, W309–W312 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    Hagel, J. M. et al. Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol. 15, 227 (2015).

    Article  Google Scholar 

  35. 35.

    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  Google Scholar 

  38. 38.

    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    Farrow, S. C., Hagel, J. M., Beaudoin, G. A. W., Burns, D. C. & Facchini, P. J. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat. Chem. Biol. 11, 728–732 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Brechenmacher (Southern Alberta Mass Spectrometry Centre, University of Calgary) for assistance with the proteomics analysis. We acknowledge the expert genome sequencing and preliminary assembly services provided by the McGill University-Genome Québec Innovation Centre. This work was supported by funds awarded through the Industrial Research Assistance Program (IRAP; Project 86155) operated by the National Research Council of Canada to Epimeron Inc.

Author information

Affiliations

Authors

Contributions

M.D. performed the in vitro enzyme characterization and wrote the manuscript; X.C. discovered the enzyme and conducted the gene expression analysis; L.C. performed all yeast work; R.C. conducted virus-induced gene-silencing experiments; S.R. and S.Y. assembled the genome; J.M.H. performed high-resolution mass spectrometry, proposed the enzymatic mechanism, and edited the manuscript; P.J.F. designed and supervised the research and edited the manuscript.

Corresponding author

Correspondence to Peter J. Facchini.

Ethics declarations

Competing interests

A patent application related to this work has been filed (PCT/CA2018/051520).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–27, Supplementary Tables 1–5, Supplementary Notes 1and 2

41589_2019_247_MOESM22_ESM.pdf

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dastmalchi, M., Chen, X., Hagel, J.M. et al. Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy. Nat Chem Biol 15, 384–390 (2019). https://doi.org/10.1038/s41589-019-0247-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing