Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals


Cell-based biosensors have great potential to detect various toxic and pathogenic contaminants in aqueous environments. However, frequently they cannot meet practical requirements due to insufficient sensing performance. To address this issue, we investigated a modular, cascaded signal amplifying methodology. We first tuned intracellular sensory receptor densities to increase sensitivity, and then engineered multi-layered transcriptional amplifiers to sequentially boost output expression level. We demonstrated these strategies by engineering ultrasensitive bacterial sensors for arsenic and mercury, and improved detection limit and output up to 5,000-fold and 750-fold, respectively. Coupled by leakage regulation approaches, we developed an encapsulated microbial sensor cell array for low-cost, portable and precise field monitoring, where the analyte can be readily quantified via displaying an easy-to-interpret volume bar-like pattern. The ultrasensitive signal amplifying methodology along with the background regulation and the sensing platform will be widely applicable to many other cell-based sensors, paving the way for their real-world applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Modular multilayer signal amplification for engineering ultrasensitive transcription-based cellular sensors.
Fig. 2: Amplifying arsenic sensor by tuning intracellular receptor density and employing single-layer transcriptional amplification.
Fig. 3: Sequential cascaded amplification further boosts the sensor’s sensitivity and output amplitude.
Fig. 4: Synergistic multi-layered amplification enables ultrasensitive sensors for mercury.
Fig. 5: Tuning the sensor background and output dynamic range via promoter engineering and reporter degradation regulation.
Fig. 6: Microbial sensor array display enabled by agarose hydrogel entrapment and microfluidic encapsulation for easy-to-use monitoring of arsenic contamination.

Data availability

All data and plasmids supporting the findings are available from the corresponding author upon reasonable request.


  1. 1.

    van der Meer, J. R. & Belkin, S. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat. Rev. Microbiol. 8, 511–522 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Kim, H. J., Jeong, H. & Lee, S. J. Synthetic biology for microbial heavy metal biosensors. Anal. Bioanal. Chem. 410, 1191–1203 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Wang, B., Barahona, M. & Buck, M. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens. Bioelectron. 40, 368–376 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Stocker, J. et al. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ. Sci. Technol. 37, 4743–4750 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    De Mora, K. et al. A pH-based biosensor for detection of arsenic in drinking water. Anal. Bioanal. Chem. 400, 1031–1039 (2011).

    Article  Google Scholar 

  6. 6.

    Cao, Y. et al. Programmable assembly of pressure sensors using pattern-forming bacteria. Nat. Biotechnol. 35, 1087–1093 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Courbet, A. et al. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra83 (2015).

    Article  Google Scholar 

  10. 10.

    Watstein, D. M. & Styczynski, M. P. Development of a pigment-based whole-cell zinc biosensor for human serum. ACS Synth. Biol. 7, 267–275 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Duan, F. & March, J. C. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc. Natl Acad. Sci. USA 107, 11260–11264 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Hwang, I. Y. et al. Reprogramming microbes to be pathogen-seeking killers. ACS Synth. Biol. 3, 228–237 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Ho, C. L. et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat. Biomed. Eng. 2, 27–37 (2018).

    Article  Google Scholar 

  14. 14.

    Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354–359 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Cerminati, S., Soncini, F. C. & Checa, S. K. Selective detection of gold using genetically engineered bacterial reporters. Biotechnol. Bioeng. 108, 2553–2560 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Belkin, S. et al. Remote detection of buried landmines using a bacterial sensor. Nat. Biotechnol. 35, 308–310 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Dana, G. V., Kuiken, T., Rejeski, D. & Snow, A. A. Synthetic biology: four steps to avoid a synthetic-biology disaster. Nature 483, 29–29 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Shemer, B., Koshet, O., Yagur-Kroll, S. & Belkin, S. Microbial bioreporters of trace explosives. Curr. Opin. Biotechnol. 45, 113–119 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Landry, B. P. et al. Phosphatase activity tunes two-component system sensor detection threshold. Nat. Commun. 9, 1433 (2018).

    Article  Google Scholar 

  20. 20.

    Kim, H. J. et al. Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens. Bioelectron. 79, 701–708 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Wang, B., Barahona, M. & Buck, M. Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks. Nucleic Acids Res. 42, 9484–9492 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Wang, B., Barahona, M. & Buck, M. Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities. Nucleic Acids Res. 43, 1955–1964 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Volpetti, F., Petrova, E. & Maerkl, S. J. A microfluidic biodisplay. ACS Synth. Biol. 6, 1979–1987 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Prindle, A. et al. A sensing array of radically coupled genetic ‘biopixels’. Nature 481, 39–44 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Ang, J. et al. Tuning response curves for synthetic biology. ACS Synth. Biol. 2, 547–567 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Merulla, D. & van der Meer, J. R. Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites. ACS Synth. Biol. 5, 36–45 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Chen, Y. et al. Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. Nat. Commun. 9, 64 (2018).

    Article  Google Scholar 

  28. 28.

    Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    Fernandez-Rodriguez, J. & Voigt, C. A. Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Res. 44, 6493–6502 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Cameron, D. E. & Collins, J. J. Tunable protein degradation in bacteria. Nat. Biotechnol. 32, 1276–1281 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Ravenscroft, P. Predicting the Global Extent of Arsenic Pollution of Groundwater and its Potential Impact on Human Health (UNICEF, New York, 2007).

  32. 32.

    Wang, B. & Buck, M. Customizing cell signaling using engineered genetic logic circuits. Trends Microbiol. 20, 376–384 (2012).

    Article  Google Scholar 

  33. 33.

    Quiles-Puchalt, N. et al. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria. Nucleic Acids Res. 41, 7260–7275 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Rhodius, V. A. et al. Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters. Mol. Syst. Biol. 9, 702 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Liu, Q. et al. Orthogonality and burdens of heterologous and gate gene circuits in E. coli. ACS Synth. Biol. 7, 553–564 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Potvin-Trottier, L., Lord, N. D., Vinnicombe, G. & Paulsson, J. Synchronous long-term oscillations in a synthetic gene circuit. Nature 538, 514–517 (2016).

    Article  Google Scholar 

  37. 37.

    Chang, C. C. et al. Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Res. 43, 7612–7623 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Wackwitz, A. et al. Internal arsenite bioassay calibration using multiple bioreporter cell lines. Microb. Biotechnol. 1, 149–157 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    Nielsen, A. A. K. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

    Article  Google Scholar 

  40. 40.

    Buffi, N. et al. Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples. Lab Chip 11, 2369–2377 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    Willsky, G. R. & Malamy, M. H. Effect of arsenate on inorganic phosphate transport in Escherichia coli. J. Bacteriol. 144, 366–374 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Pardee, K. et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Rampley, C. P. N. et al. Development of simcells as a novel chassis for functional biosensors. Sci. Rep. 7, 7261 (2017).

    Article  Google Scholar 

  44. 44.

    Cevenini, L. et al. A novel bioluminescent NanoLuc yeast-estrogen screen biosensor (nanoYES) with a compact wireless camera for effect-based detection of endocrine-disrupting chemicals. Anal. Bioanal. Chem. 410, 1237–1246 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Wen, K. Y. et al. A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples. ACS Synth. Biol. 6, 2293–2301 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Nikel, P. I., Martínez-García, E. & De Lorenzo, V. Biotechnological domestication of pseudomonads using synthetic biology. Nat. Rev. Microbiol. 12, 368–379 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Choi, P. J., Cai, L., Frieda, K. & Xie, X. S. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442–446 (2008).

    CAS  Article  Google Scholar 

  48. 48.

    Ma, D. et al. Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synth. Biol. 3, ysy018 (2018).

    Article  Google Scholar 

  49. 49.

    Liu, X. et al. 3D printing of living responsive materials and devices. Adv. Mater. 30, 107821 (2018).

    Google Scholar 

  50. 50.

    Shetty, R. P., Endy, D. & Knight, T. F. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).

    Article  Google Scholar 

  51. 51.

    Ochman, H., Gerber, A. S. & Hartl, D. L. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    CAS  Article  Google Scholar 

  53. 53.

    Armbruster, D. A. & Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29, S49–S52 (2008).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Wang, B., Kitney, R. I., Joly, N. & Buck, M. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat. Commun. 2, 508 (2011).

    Article  Google Scholar 

Download references


We thank M. Billah (Khulna University) and his colleagues for facilitating our collections of groundwater samples in Bangladesh. This work was supported by UK BBSRC project grant (no. BB/N007212/1), Leverhulme Trust research grant (no. RPG-2015-445), Wellcome Trust Seed Award in Science (no. 202078/Z/16/Z) and EPSRC/BBSRC Global Challenges Research Fund Awards. X.W. was supported by scholarships from the China Scholarship Council and Scottish Universities Life Sciences Alliance. F.V., E.P. and S.J.M. were supported by the Ecole Polytechnique Federale de Lausanne, a Swiss National Science Foundation Grant (no. CR23I2 140697) and a Special Opportunity Grant (no. 2015/325).

Author information




B.W. conceived and led the study. X.W. designed the experiments with inputs and supervision from B.W. and C.F. X.W. performed all the experiments and data analysis excluding the microfluidics-based experiments. F.V., E.P. and S.J.M. designed and performed the microfluidics-based experiments. All authors took part in the interpretation of results and preparation of materials for the manuscript. B.W. and X.W. wrote the manuscript with comments from all authors.

Corresponding author

Correspondence to Baojun Wang.

Ethics declarations

Competing interests

B.W. and X.W. filed a patent application based on the technology invention in this work.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Supplementary Figures 1–11

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Volpetti, F., Petrova, E. et al. Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nat Chem Biol 15, 540–548 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing