Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Junction resolving enzymes use multivalency to keep the Holliday junction dynamic

Abstract

Holliday junction (HJ) resolution by resolving enzymes is essential for chromosome segregation and recombination-mediated DNA repair. HJs undergo two types of structural dynamics that determine the outcome of recombination: conformer exchange between two isoforms and branch migration. However, it is unknown how the preferred branch point and conformer are achieved between enzyme binding and HJ resolution given the extensive binding interactions seen in static crystal structures. Single-molecule fluorescence resonance energy transfer analysis of resolving enzymes from bacteriophages (T7 endonuclease I), bacteria (RuvC), fungi (GEN1) and humans (hMus81-Eme1) showed that both types of HJ dynamics still occur after enzyme binding. These dimeric enzymes use their multivalent interactions to achieve this, going through a partially dissociated intermediate in which the HJ undergoes nearly unencumbered dynamics. This evolutionarily conserved property of HJ resolving enzymes provides previously unappreciated insight on how junction resolution, conformer exchange and branch migration may be coordinated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Endo I binding to HJs captures the instantaneous junction conformer and permits exchange between two isoforms (B1 and B2).
Fig. 2: Endo I binding captures the instantaneous branch position and permits branch migration through a PD intermediate.
Fig. 3: RuvC binding permits conformer exchange and branch migration through PD.
Fig. 4: GEN1 and hMus81-Eme1 binding both permit conformer exchange and hMus81-Eme1 binding also permits branch migration.
Fig. 5: Proposed models for the coordination of junction resolution, conformer exchange and branch migration.

Similar content being viewed by others

Code availability

All custom software and codes are available from the corresponding authors on request or can be downloaded from the Ha Research Group website at http://ha.med.jhmi.edu/resources/.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Liu, Y. & West, S. C. Happy Hollidays: 40th anniversary of the Holliday junction. Nat. Rev. Mol. Cell Biol. 5, 937–944 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Lilley, D. M. Structures of helical junctions in nucleic acids. Q. Rev. Biophys. 33, 109–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Lilley, D. M. & White, M. F. The junction-resolving enzymes. Nat. Rev. Mol. Cell Biol. 2, 433–443 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Déclais, A. C. & Lilley, D. M. New insight into the recognition of branched DNA structure by junction-resolving enzymes. Curr. Opin. Struct. Biol. 18, 86–95 (2008).

    Article  PubMed  Google Scholar 

  5. Wyatt, H. D. & West, S. C. Holliday junction resolvases. Cold Spring Harb. Perspect. Biol. 6, a023192 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sarbajna, S. & West, S. C. Holliday junction processing enzymes as guardians of genome stability. Trends. Biochem. Sci. 39, 409–419 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Karymov, M., Daniel, D., Sankey, O. F. & Lyubchenko, Y. L. Holliday junction dynamics and branch migration: single-molecule analysis. Proc. Natl Acad. Sci. USA 102, 8186–8191 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. McKinney, S. A., Freeman, A. D., Lilley, D. M. & Ha, T. Observing spontaneous branch migration of Holliday junctions one step at a time. Proc. Natl Acad. Sci. USA 102, 5715–5720 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. McKinney, S. A., Déclais, A. C., Lilley, D. M. J. & Ha, T. Structural dynamics of individual Holliday junctions. Nat. Struct. Biol. 10, 93–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Joo, C., McKinney, S. A., Lilley, D. M. J. & Ha, T. Exploring rare conformational species and ionic effects in DNA Holliday junctions using single-molecule spectroscopy. J. Mol. Biol. 341, 739–751 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Hohng, S. et al. Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the Holliday junction. Science 318, 279–283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hadden, J. M., Déclais, A. C., Carr, S. B., Lilley, D. M. & Phillips, S. E. The structural basis of Holliday junction resolution by T7 endonuclease I. Nature 449, 621–624 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Biertümpfel, C., Yang, W. & Suck, D. Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature 449, 616–620 (2007).

    Article  PubMed  Google Scholar 

  14. Déclais, A. C. et al. The complex between a four-way DNA junction and T7 endonuclease I. EMBO J. 22, 1398–1409 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Górecka, K. M., Komorowska, W. & Nowotny, M. Crystal structure of RuvC resolvase in complex with Holliday junction substrate. Nucleic Acids Res. 41, 9945–9955 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu, Y. et al. Crystal structure of a eukaryotic GEN1 resolving enzyme bound to DNA. Cell Rep. 13, 2565–2575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Ha, T. Single-molecule approaches embrace molecular cohorts. Cell 154, 723–726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duckett, D. R. et al. The structure of the Holliday junction, and its resolution. Cell 55, 79–89 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Déclais, A. C., Hadden, J., Phillips, S. E. & Lilley, D. M. The active site of the junction-resolving enzyme T7 endonuclease I. J. Mol. Biol. 307, 1145–1158 (2001).

    Article  PubMed  Google Scholar 

  21. Duckett, D. R., Panis, M. J. & Lilley, D. M. Binding of the junction-resolving enzyme bacteriophage T7 endonuclease I to DNA: separation of binding and catalysis by mutation. J. Mol. Biol. 246, 95–107 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, J., Déclais, A. C. & Lilley, D. M. Mechanistic aspects of the DNA junction-resolving enzyme T7 endonuclease I. Biochemistry 45, 3934–3942 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, H. D. et al. Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules. Proc. Natl Acad. Sci. USA 99, 4284–4289 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, R. et al. SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146, 222–232 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Freeman, A. D., Déclais, A. C. & Lilley, D. M. The importance of the N-terminus of T7 endonuclease I in the interaction with DNA junctions. J. Mol. Biol. 425, 395–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Bennett, R. J., Dunderdale, H. J. & West, S. C. Resolution of Holliday junctions by RuvC resolvase: cleavage specificity and DNA distortion. Cell 74, 1021–1031 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. van Gool, A. J., Shah, R., Mézard, C. & West, S. C. Functional interactions between the holliday junction resolvase and the branch migration motor of Escherichia coli. EMBO J. 17, 1838–1845 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zerbib, D., Mézard, C., George, H. & West, S. C. Coordinated actions of RuvABC in Holliday junction processing. J. Mol. Biol. 281, 621–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Lilley, D. M. & White, M. F. Resolving the relationships of resolving enzymes. Proc. Natl Acad. Sci. USA 97, 9351–9353 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Fogg, J. M., Schofield, M. J., White, M. F. & Lilley, D. M. Sequence and functional-group specificity for cleavage of DNA junctions by RuvC of Escherichia coli. Biochemistry 38, 11349–11358 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Bennett, R. J. & West, S. C. Structural analysis of the RuvC-Holliday junction complex reveals an unfolded junction. J. Mol. Biol. 252, 213–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Shah, R., Bennett, R. J. & West, S. C. Genetic recombination in E. coli: RuvC protein cleaves Holliday junctions at resolution hotspots in vitro. Cell 79, 853–864 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Fogg, J. M. & Lilley, D. M. Ensuring productive resolution by the junction-resolving enzyme RuvC: large enhancement of the second-strand cleavage rate. Biochemistry 39, 16125–16134 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Wyatt, H. D., Sarbajna, S., Matos, J. & West, S. C. Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells. Mol. Cell 52, 234–247 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Castor, D. et al. Cooperative control of holliday junction resolution and DNA repair by the SLX1 and MUS81-EME1 nucleases. Mol. Cell 52, 221–233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gwon, G. H. et al. Crystal structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates. EMBO J. 33, 1061–1072 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang, J. H., Kim, J. J., Choi, J. M., Lee, J. H. & Cho, Y. Crystal structure of the Mus81-Eme1 complex. Genes Dev. 22, 1093–1106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Palets, D., Lushnikov, A. Y., Karymov, M. A. & Lyubchenko, Y. L. Effect of single-strand break on branch migration and folding dynamics of Holliday junctions. Biophys. J. 99, 1916–1924 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parsons, C. A. & West, S. C. Specificity of binding to four-way junctions in DNA by bacteriophage T7 endonuclease I. Nucleic Acids Res. 18, 4377–4384 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gaskell, L. J., Osman, F., Gilbert, R. J. & Whitby, M. C. Mus81 cleavage of Holliday junctions: a failsafe for processing meiotic recombination intermediates? EMBO J. 26, 1891–1901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matulova, P. et al. Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J. Biol. Chem. 284, 7733–7745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mazina, O. M. & Mazin, A. V. Human Rad54 protein stimulates human Mus81-Eme1 endonuclease. Proc. Natl Acad. Sci. USA 105, 18249–18254 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Constantinou, A., Davies, A. A. & West, S. C. Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells. Cell 104, 259–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, R. et al. BLM helicase facilitates Mus81 endonuclease activity in human cells. Cancer Res. 65, 2526–2531 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Amit, R., Gileadi, O. & Stavans, J. Direct observation of RuvAB-catalyzed branch migration of single Holliday junctions. Proc. Natl Acad. Sci. USA 101, 11605–11610 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Karymov, M. A., Bogdanov, A. & Lyubchenko, Y. L. Single molecule fluorescence analysis of branch migration of holliday junctions: effect of DNA sequence. Biophys. J. 95, 1239–1247 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hadden, J. M., Convery, M. A., Déclais, A. C., Lilley, D. M. & Phillips, S. E. Crystal structure of the Holliday junction resolving enzyme T7 endonuclease I. Nat. Struct. Biol. 8, 62–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ha, T. et al. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Ha lab members for experimental help and discussion. This work was supported by grants from the National Science Foundation (no. PHY-1430124) and the National Institutes of Health (no. GM 122569) to T.H., and grants from the Korean government (no. NRF 2018R1A2A1A190 to Y.C.). R.Z. is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation. T.H. is an employee of the Howard Hughes Medical Institute. Work in the Lilley lab is funded by Cancer Research UK program grant no. A18604.

Author information

Authors and Affiliations

Authors

Contributions

R.Z. and T.H. conceived and designed the study. R.Z. and O.Y. performed experiments and analyzed the data. A.-C.D., A.D.J.F. and D.M.J.L. expressed and purified wild type Endo I proteins, Endo I mutants and GEN1 proteins. A.-C.D. performed Endo I gel retardation assays. H.J., G.H.G. and Y.C. expressed and purified hMus81-Eme1 proteins. R.Z. and T.H. wrote the manuscript with input from the other authors.

Corresponding authors

Correspondence to Ruobo Zhou or Taekjip Ha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–2, Supplementary Figures 1–20

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Yang, O., Déclais, AC. et al. Junction resolving enzymes use multivalency to keep the Holliday junction dynamic. Nat Chem Biol 15, 269–275 (2019). https://doi.org/10.1038/s41589-018-0209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0209-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing