Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequential assembly of the septal cell envelope prior to V snapping in Corynebacterium glutamicum

Abstract

Members of the Corynebacterineae, including Corynebacterium and Mycobacterium, have an atypical cell envelope characterized by an additional mycomembrane outside of the peptidoglycan layer. How this multilayered cell envelope is assembled remains unclear. Here, we tracked the assembly dynamics of different envelope layers in Corynebacterium glutamicum and Mycobacterium smegmatis by using metabolic labeling and found that the septal cell envelope is assembled sequentially in both species. Additionally, we demonstrate that in C. glutamicum, the peripheral peptidoglycan layer at the septal junction remains contiguous throughout septation, forming a diffusion barrier for the fluid mycomembrane. This diffusion barrier is resolved through perforations in the peripheral peptidoglycan, thus leading to the confluency of the mycomembrane before daughter cell separation (V snapping). Furthermore, the same junctional peptidoglycan also serves as a mechanical link holding the daughter cells together and undergoes mechanical fracture during V snapping. Finally, we show that normal V snapping in C. glutamicum depends on complete assembly of the septal cell envelope.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The septal cell envelope is sequentially assembled during cytokinesis in C. glutamicum.
Fig. 2: The mycomembrane of C. glutamicum becomes confluent before V snapping.
Fig. 3: The mycomembrane is confluent between physically touching neighbor cells in C. glutamicum.
Fig. 4: Peripheral PGL in C. glutamicum forms a diffusion barrier for lipids.
Fig. 5: Peripheral PGL in C. glutamicum undergoes mechanical fracture during V snapping.
Fig. 6: V snapping in C. glutamicum depends on complete assembly of the septal cell envelope.

Similar content being viewed by others

Code availability

All MATLAB scripts used to analyze microscopy images are available upon request.

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files) or are available from the corresponding author on reasonable request.

References

  1. Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

    Article  Google Scholar 

  2. Hoffmann, C., Leis, A., Niederweis, M., Plitzko, J. M. & Engelhardt, H. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl Acad. Sci. USA 105, 3963–3967 (2008).

    Article  CAS  Google Scholar 

  3. Zuber, B. et al. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J. Bacteriol. 190, 5672–5680 (2008).

    Article  CAS  Google Scholar 

  4. Marrakchi, H., Lanéelle, M. A. & Daffé, M. Mycolic acids: structures, biosynthesis, and beyond. Chem. Biol. 21, 67–85 (2014).

    Article  CAS  Google Scholar 

  5. Rodriguez-Rivera, F. P., Zhou, X., Theriot, J. A. & Bertozzi, C. R. Visualization of mycobacterial membrane dynamics in live cells. J. Am. Chem. Soc. 139, 3488–3495 (2017).

    Article  CAS  Google Scholar 

  6. Draper, P. The outer parts of the mycobacterial envelope as permeability barriers. Front. Biosci. 3, D1253–D1261 (1998).

    Article  CAS  Google Scholar 

  7. Jackson, M. et al. Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol. Microbiol. 31, 1573–1587 (1999).

    Article  CAS  Google Scholar 

  8. Zhang, Y. The magic bullets and tuberculosis drug targets. Annu. Rev. Pharmacol. Toxicol. 45, 529–564 (2005).

    Article  CAS  Google Scholar 

  9. Janin, Y. L. Antituberculosis drugs: ten years of research. Bioorg. Med. Chem. 15, 2479–2513 (2007).

    Article  CAS  Google Scholar 

  10. Jankute, M., Cox, J. A., Harrison, J. & Besra, G. S. Assembly of the mycobacterial cell wall. Annu. Rev. Microbiol. 69, 405–423 (2015).

    Article  CAS  Google Scholar 

  11. Daniel, R. A. & Errington, J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113, 767–776 (2003).

    Article  CAS  Google Scholar 

  12. Kuru, E. et al. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent d-amino acids. Angew. Chem. Int. Edn. Engl. 51, 12519–12523 (2012).

    Article  CAS  Google Scholar 

  13. Letek, M. et al. DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J. Bacteriol. 190, 3283–3292 (2008).

    Article  CAS  Google Scholar 

  14. Meniche, X. et al. Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc. Natl Acad. Sci. USA 111, E3243–E3251 (2014).

    Article  CAS  Google Scholar 

  15. Carel, C. et al. Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum. PLoS One 9, e97148 (2014).

    Article  Google Scholar 

  16. Hill, H. W. Branching in bacteria with special reference to B. diphtheriae. J. Med. Res. 7, 115–127 (1902).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dahl, J. L. Electron microscopy analysis of Mycobacterium tuberculosis cell division. FEMS Microbiol. Lett. 240, 15–20 (2004).

    Article  CAS  Google Scholar 

  18. Letek, M. et al. Cell growth and cell division in the rod-shaped actinomycete Corynebacterium glutamicum. Antonie van Leeuwenhoek 94, 99–109 (2008).

    Article  CAS  Google Scholar 

  19. Zhou, X., Halladin, D. K. & Theriot, J. A. Fast mechanically driven daughter cell separation is widespread in actinobacteria. MBio 7, e00952–16 (2016).

    Article  Google Scholar 

  20. Siegrist, M. S., Swarts, B. M., Fox, D. M., Lim, S. A. & Bertozzi, C. R. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol. Rev. 39, 184–202 (2015).

    Article  Google Scholar 

  21. Backus, K. M. et al. Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nat. Chem. Biol. 7, 228–235 (2011).

    Article  CAS  Google Scholar 

  22. Foley, H. N., Stewart, J. A., Kavunja, H. W., Rundell, S. R. & Swarts, B. M. Bioorthogonal chemical reporters for selective in situ probing of mycomembrane components in mycobacteria. Angew. Chem. Int. Edn. Engl. 55, 2053–2057 (2016).

    Article  CAS  Google Scholar 

  23. Kumagai, Y., Hirasawa, T., Hayakawa, K., Nagai, K. & Wachi, M. Fluorescent phospholipid analogs as microscopic probes for detection of the mycolic acid-containing layer in Corynebacterium glutamicum: detecting alterations in the mycolic acid-containing layer following ethambutol treatment. Biosci. Biotechnol. Biochem. 69, 2051–2056 (2005).

    Article  CAS  Google Scholar 

  24. Puech, V. et al. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147, 1365–1382 (2001).

    Article  CAS  Google Scholar 

  25. Ngo, J. T. et al. Click-EM for imaging metabolically tagged nonprotein biomolecules. Nat. Chem. Biol. 12, 459–465 (2016).

    Article  CAS  Google Scholar 

  26. Vijay, S., Anand, D. & Ajitkumar, P. Unveiling unusual features of formation of septal partition and constriction in mycobacteria: an ultrastructural study. J. Bacteriol. 194, 702–707 (2012).

    Article  CAS  Google Scholar 

  27. Zhou, X. et al. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. Science 348, 574–578 (2015).

    Article  CAS  Google Scholar 

  28. Peyret, J. L. et al. Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol. Microbiol. 9, 97–109 (1993).

    Article  CAS  Google Scholar 

  29. Hansmeier, N. et al. Classification of hyper-variable Corynebacterium glutamicum surface-layer proteins by sequence analyses and atomic force microscopy. J. Biotechnol. 112, 177–193 (2004).

    Article  CAS  Google Scholar 

  30. Hansmeier, N. et al. The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6kb genomic island absent from the type strain ATCC 13032. Microbiology 152, 923–935 (2006).

    Article  CAS  Google Scholar 

  31. Barreau, C., Bimet, F., Kiredjian, M., Rouillon, N. & Bizet, C. Comparative chemotaxonomic studies of mycolic acid-free coryneform bacteria of human origin. J. Clin. Microbiol. 31, 2085–2090 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Umeda, A. & Amako, K. Growth of the surface of Corynebacterium diphtheriae. Microbiol. Immunol. 27, 663–671 (1983).

    Article  CAS  Google Scholar 

  33. Tsuge, Y., Ogino, H., Teramoto, H., Inui, M. & Yukawa, H. Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R. J. Bacteriol. 190, 8204–8214 (2008).

    Article  CAS  Google Scholar 

  34. Atilgan, E., Magidson, V., Khodjakov, A. & Chang, F. Morphogenesis of the fission yeast cell through cell wall expansion. Curr. Biol. 25, 2150–2157 (2015).

    Article  CAS  Google Scholar 

  35. Telenti, A. et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat. Med. 3, 567–570 (1997).

    Article  CAS  Google Scholar 

  36. Escuyer, V. E. et al. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J. Biol. Chem. 276, 48854–48862 (2001).

    Article  CAS  Google Scholar 

  37. Mikusová, K., Slayden, R. A., Besra, G. S. & Brennan, P. J. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother. 39, 2484–2489 (1995).

    Article  Google Scholar 

  38. Radmacher, E. et al. Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits l-glutamate efflux of Corynebacterium glutamicum. Microbiology 151, 1359–1368 (2005).

    Article  CAS  Google Scholar 

  39. Schubert, K. et al. The antituberculosis drug ethambutol selectively blocks apical growth in CMN group bacteria. MBio 8, e02213–16 (2017).

    Article  CAS  Google Scholar 

  40. Kawai, Y. et al. A widespread family of bacterial cell wall assembly proteins. EMBO J. 30, 4931–4941 (2011).

    Article  CAS  Google Scholar 

  41. Chan, Y. G., Frankel, M. B., Dengler, V., Schneewind, O. & Missiakas, D. Staphylococcus aureus mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic acids into the extracellular medium. J. Bacteriol. 195, 4650–4659 (2013).

    Article  CAS  Google Scholar 

  42. Baumgart, M., Schubert, K., Bramkamp, M. & Frunzke, J. Impact of LytR-CpsA-Psr proteins on cell wall biosynthesis in Corynebacterium glutamicum. J. Bacteriol. 198, 3045–3059 (2016).

    Article  CAS  Google Scholar 

  43. Grzegorzewicz, A. E. et al. Assembling of the Mycobacterium tuberculosis cell wall core. J. Biol. Chem. 291, 18867–18879 (2016).

    Article  CAS  Google Scholar 

  44. Harrison, J. et al. Lcp1 is a phosphotransferase responsible for ligating arabinogalactan to peptidoglycan in Mycobacterium tuberculosis. MBio 7, e00972–16 (2016).

    Article  CAS  Google Scholar 

  45. Dautin, N. et al. Mycoloyltransferases: a large and major family of enzymes shaping the cell envelope of Corynebacteriales. Biochim. Biophys. Acta Gen. Subj. 1861, 3581–3592 (2017).

    Article  CAS  Google Scholar 

  46. Touchette, M. H. & Seeliger, J. C. Transport of outer membrane lipids in mycobacteria. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1862, 1340–1354 (2017).

    Article  CAS  Google Scholar 

  47. Baumgart, M. et al. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl. Environ. Microbiol. 79, 6006–6015 (2013).

    Article  CAS  Google Scholar 

  48. Okibe, N., Suzuki, N., Inui, M. & Yukawa, H. Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J. Microbiol. Methods 85, 155–163 (2011).

    Article  CAS  Google Scholar 

  49. Rodriguez-Rivera, F. P., Zhou, X., Theriot, J. A. & Bertozzi, C. R. Acute modulation of mycobacterial cell envelope biogenesis by front-line tuberculosis drugs. Angew. Chem. Int. Edn. Engl. 57, 5267–5272 (2018).

    Article  CAS  Google Scholar 

  50. Besanceney-Webler, C. et al. Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew. Chem. Int. Edn. Engl. 50, 8051–8056 (2011).

    Article  CAS  Google Scholar 

  51. Paintdakhi, A. et al. Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol. Microbiol. 99, 767–777 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Swarts (Central Michigan University) for providing O-alkTMM and J. Ngo (University of California, San Diego) for DBF-N3; J. Perrino, L. Joubert, and M. Footer (Stanford University) for assistance with the contrast-enhanced TEM sample preparation; A. Straight (Stanford University) for access to the microscope used for FRAP experiments; J. Frunzke (Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH) for strain MB001; the Research Institute of Innovative Technology for the Earth in Kyoto Japan for plasmid pCRD206; M. Tsuchida (Open Imaging) for help with the laser ablation experiment; and E. Koslover (University of California, San Diego) for helpful discussions. X.Z. was supported by a Stanford University Interdisciplinary Graduate Fellowship. F.P.R.-R. was supported by a Ford Foundation Predoctoral Fellowship and a University of California Chancellor’s Fellowship. H.C.L. was supported by a Simons Foundation Life Science Research Foundation fellowship. J.C.B. was supported by an NIH Ruth Kirchstein National Research Service Award (F32GM116338). This work was supported by National Institutes of Health grants AI036929 (to J.A.T.), GM058867 (to C.R.B.), and AI051622 (to C.R.B.); Stanford Center for Systems Biology grant P50-GM107615 (to J.A.T.); and the Howard Hughes Medical Institute (to J.A.T. and C.R.B.) and an HHMI-Simons Faculty Scholar Award (to T.G.B.). The transmission electron microscope used in this project was supported in part by ARRA award 1S10RR026780-01 from the National Center for Research Resources (NCRR). The manuscript’s contents are solely the responsibility of the authors and do not necessarily represent the official views of the NCRR or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

X.Z., F.P.R.-R., C.R.B., and J.A.T. conceived the project and designed experiments. X.Z. performed the experiments and analyzed data. F.P.R.-R. synthesized and characterized the fluorescent probes. H.C.L. and T.G.B. constructed bacterial strains. J.C.B. contributed expertise to the FRAP experiments and analysis. X.Z. and J.A.T. wrote the manuscript. All authors discussed the results and interpretation of the data, and read and commented on the final version of the manuscript.

Corresponding author

Correspondence to Julie A. Theriot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–14

Reporting Summary

Supplementary Video 1

Cell envelope assembly dynamics in C. glutamicum.

Supplementary Video 2

Confluency of mycomembrane in C. glutamicum.

Supplementary Video 3

Cell envelope assembly dynamics and delayed V snapping in ∆cgp_1735.

Supplementary Video 4

Perturbed cell envelope assembly and V snapping in EMB treated C. glutamicum

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Rodriguez-Rivera, F.P., Lim, H.C. et al. Sequential assembly of the septal cell envelope prior to V snapping in Corynebacterium glutamicum. Nat Chem Biol 15, 221–231 (2019). https://doi.org/10.1038/s41589-018-0206-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0206-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology