Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective and reversible modification of kinase cysteines with chlorofluoroacetamides

Abstract

Irreversible inhibition of disease-associated proteins with small molecules is a powerful approach for achieving increased and sustained pharmacological potency. Here, we introduce α-chlorofluoroacetamide (CFA) as a novel warhead of targeted covalent inhibitor (TCI). Despite weak intrinsic reactivity, CFA-appended quinazoline showed high reactivity toward Cys797 of epidermal growth factor receptor (EGFR). In cells, CFA-quinazoline showed higher target specificity for EGFR than the corresponding Michael acceptors in a wide concentration range (0.1–10 μM). The cysteine adduct of the CFA derivative was susceptible to hydrolysis and reversibly yielded intact thiol but was stable in solvent-sequestered ATP-binding pocket of EGFR. This environment-dependent hydrolysis can potentially reduce off-target protein modification by CFA-based drugs. Oral administration of CFA quinazoline NS-062 significantly suppressed tumor growth in a mouse xenograft model. Further, CFA-appended pyrazolopyrimidine irreversibly inhibited Bruton’s tyrosine kinase with higher target specificity. These results demonstrate the utility of CFA as a new class warheads for TCI.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Screening of covalent reactive groups.
Fig. 2: Proteome reactivity profiles of quinazoline probes in A431 cells.
Fig. 3: Characterization of reverse hydrolysis reaction of thiol-CFA probe adducts.
Fig. 4: Inhibitory activity profiles of CFA-based inhibitor NS-062.
Fig. 5: In vivo activity profiles of CFA-based inhibitor NS-062.
Fig. 6: In-cell reactivity profiles of pyrazolopyrimidine derivatives in Ramos cell.

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files) or will be available from the corresponding author on reasonable request.

References

  1. 1.

    Potashman, M. H. & Duggan, M. E. Covalent modifiers: an orthogonal approach to drug design. J. Med. Chem. 52, 1231–1246 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Johnson, D. S., Weerapana, E. & Cravatt, B. F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med. Chem. 2, 949–964 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug. Discov. 10, 307–317 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Nacht, M. et al. Discovery of a potent and isoform-selective targeted covalent inhibitor of the lipid kinase PI3Kα. J. Med. Chem. 56, 712–721 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Goedken, E. R. et al. Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol. J. Biol. Chem. 290, 4573–4589 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Forster, M. et al. Selective JAK3 inhibitors with a covalent reversible binding mode targeting a new induced fit binding pocket. Cell Chem. Biol. 23, 1335–1340 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Dahal, U. P., Obach, R. S. & Gilbert, A. M. Benchmarking in vitro covalent binding burden as a tool to assess potential toxicity caused by nonspecific covalent binding of covalent drugs. Chem. Res. Toxicol. 26, 1739–1745 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Baillie, T. A. Targeted covalent inhibitors for drug design. Angew. Chem. Int. Ed. Engl. 55, 13408–13421 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Singh, J., Petter, R. C. & Kluge, A. F. Targeted covalent drugs of the kinase family. Curr. Opin. Chem. Biol. 14, 475–480 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Barf, T. & Kaptein, A. Irreversible protein kinase inhibitors: balancing the benefits and risks. J. Med. Chem. 55, 6243–6262 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Liu, Q. et al. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 20, 146–159 (2013).

    Article  Google Scholar 

  12. 12.

    Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    Cross, D. A. E. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 4, 1046–1061 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Finlay, M. R. V. et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J. Med. Chem. 57, 8249–8267 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS. Med. 2, e73 (2005).

    Article  Google Scholar 

  16. 16.

    Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    Flanagan, M. E. et al. Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors. J. Med. Chem. 57, 10072–10079 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Jöst, C., Nitsche, C., Scholz, T., Roux, L. & Klein, C. D. Promiscuity and selectivity in covalent enzyme inhibition: a systematic study of electrophilic fragments. J. Med. Chem. 57, 7590–7599 (2014).

    Article  Google Scholar 

  19. 19.

    Serafimova, I. M. et al. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8, 471–476 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Cal, P. M. S. D. et al. Iminoboronates: a new strategy for reversible protein modification. J. Am. Chem. Soc. 134, 10299–10305 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Krishnan, S. et al. Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. J. Am. Chem. Soc. 136, 12624–12630 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Akçay, G. et al. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat. Chem. Biol. 12, 931–936 (2016).

    Article  Google Scholar 

  23. 23.

    Bandyopadhyay, A. & Gao, J. Targeting biomolecules with reversible covalent chemistry. Curr. Opin. Chem. Biol. 34, 110–116 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Lanning, B. R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Niessen, S. et al. Proteome-wide map of targets of T790M-EGFR-directed covalent inhibitors. Cell. Chem. Biol. 24, 1388–1400.e7 (2017).

    CAS  Google Scholar 

  26. 26.

    Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Kobayashi, T., Hoppmann, C., Yang, B. & Wang, L. Using protein-confined proximity to determine chemical reactivity. J. Am. Chem. Soc. 138, 14832–14835 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Nonaka, H., Fujishima, S. H., Uchinomiya, S. H., Ojida, A. & Hamachi, I. Selective covalent labeling of tag-fused GPCR proteins on live cell surface with a synthetic probe for their functional analysis. J. Am. Chem. Soc. 132, 9301–9309 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Bordwell, F. G. & Brannen, W. T. Jr. The effect of the carbonyl and related groups on the reactivity of halides in SN2 reactions. J. Am. Chem. Soc. 86, 4645–4650 (1964).

    CAS  Article  Google Scholar 

  30. 30.

    Yoshikawa, S. et al. Structural basis for the altered drug sensitivities of non-small cell lung cancer-associated mutants of human epidermal growth factor receptor. Oncogene 32, 27–38 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Cravatt, B. F., Wright, A. T. & Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Schwartz, P. A. et al. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc. Natl. Acad. Sci. USA 111, 173–178 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Yoshimatsu, M., Kawamoto, M. & Gotoh, K. First Lewis acid catalyzed generation and reaction of α-organylsulfanyl and α-organylselanyl carbenium ions using ethyl α-fluoroacetate derivatives. Eur. J. Org. Chem. 2884–2887 (2005).

  34. 34.

    Honigberg, L. A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. U.S.A. 107, 13075–13080 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    Bradshaw, J. M. et al. Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat. Chem. Biol. 11, 525–531 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Cee, V. J. et al. Systematic study of the glutathione (GSH) reactivity of N-arylacrylamides: 1. Effects of aryl substitution. J. Med. Chem. 58, 9171–9178 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    McBee, E. T., Christman, D. L., Johnson, R. W. Jr & Roberts, C. W. Rates of reaction of some halogen-containing esters with potassium iodide in dry acetone. J. Am. Chem. Soc. 78, 4595–4596 (1956).

    CAS  Article  Google Scholar 

  38. 38.

    Wiberg, K. B. & Rablen, P. R. Origin of the stability of carbon tetrafluoride: negative hyperconjugation reexamined. J. Am. Chem. Soc. 115, 614–625 (1993).

    CAS  Article  Google Scholar 

  39. 39.

    O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 37, 308–319 (2008).

    PubMed  Google Scholar 

  40. 40.

    Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    Zhang, T. et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat. Chem. Biol. 12, 876–884 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    CAS  Article  Google Scholar 

  43. 43.

    Sogabe, S. et al. Structure-based approach for the discovery of pyrrolo[3,2-d]pyrimidine-based EGFR T790M/L858R mutant inhibitors. ACS Med. Chem. Lett. 4, 201–205 (2012).

    Article  Google Scholar 

  44. 44.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  Article  Google Scholar 

  45. 45.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, (213–221 (2010).

    Google Scholar 

  46. 46.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  47. 47.

    Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D. Biol. Crystallogr. 68, 352–367 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    Shibata, T. et al. Breast cancer resistance to antiestrogens is enhanced by increased ER degradation and ERBB2 expression. Cancer Res. 77, 545–556 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Watari, K. et al. Phosphorylation of mTOR Ser2481 is a key target limiting the efficacy of rapalogs for treating hepatocellular carcinoma. Oncotarget 7, 47403–47417 (2016).

    Article  Google Scholar 

  51. 51.

    Ackley, D. C., Rockich, K. T. & Baker, T. R. in Optimization in Drug Discovery 151‒162 (Humana Press Inc., Totowa, NJ, 2004).

Download references

Acknowledgements

We thank Y. Ichinose, National Hospital Organization, Kyushu Cancer Center (Fukuoka, Japan) for kindly providing PC-9 cells. We also thank M. Fujita, Kyushu University (Fukuoka, Japan) for kindly providing HEK293 cells. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Chemistry for Multimolecular Crowding Biosystems” (JSPS KAKENHI Grant No. JP17H06349) and Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP18am0101091. A.O. acknowledges Takeda Science Foundation for its financial support. N.S. acknowledges Grant-in-Aid for Young Scientists B (JSPS KAKENHI Grant No. JP17K15483) for its financial support. H.F. acknowledges JSPS Research Fellowships for Young Scientists. I.T.b.M. is supported by the World Premier International Research Center Initiative, Japan. K.K. acknowledges Grant-in-Aid for Scientific Research on Innovative Areas (JSPS KAKENHI Grant No. JP15H05955).

Author information

Affiliations

Authors

Contributions

A.O. conceived and directed the study. N.S., H.F., M. Sato. C.M., K.O., Y.H., and K.T. synthesized compounds, designed and executed chemical, biochemical and cellular experiments and analyzed data. K.W., T.S., and M.O. performed in vivo animal studies. S.S., S.M., Y.A., M. Shiroishi., J.M.M.C., and T.U. performed protein expression and X-ray crystallography experiments. K.K., T.T., and I.H. performed proteome analysis by mass spectrometry. A.O., N.M., T.N., S.K., and S.O. performed the pharmacokinetics studies. Y.Y. assisted the data analysis of the structure–activity relationship. A.O., N.S., and H.F. wrote the manuscript.

Corresponding author

Correspondence to Akio Ojida.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–9, Supplementary Figures 1–32

Reporting Summary

Supplementary Note 1

Synthetic Procedures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shindo, N., Fuchida, H., Sato, M. et al. Selective and reversible modification of kinase cysteines with chlorofluoroacetamides. Nat Chem Biol 15, 250–258 (2019). https://doi.org/10.1038/s41589-018-0204-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing