Abstract

The identification of activating mutations in NOTCH1 in 50% of T cell acute lymphoblastic leukemia has generated interest in elucidating how these mutations contribute to oncogenic transformation and in targeting the pathway. A phenotypic screen identified compounds that interfere with trafficking of Notch and induce apoptosis via an endoplasmic reticulum (ER) stress mechanism. Target identification approaches revealed a role for SLC39A7 (ZIP7), a zinc transport family member, in governing Notch trafficking and signaling. Generation and sequencing of a compound-resistant cell line identified a V430E mutation in ZIP7 that confers transferable resistance to the compound NVS-ZP7-4. NVS-ZP7-4 altered zinc in the ER, and an analog of the compound photoaffinity labeled ZIP7 in cells, suggesting a direct interaction between the compound and ZIP7. NVS-ZP7-4 is the first reported chemical tool to probe the impact of modulating ER zinc levels and investigate ZIP7 as a novel druggable node in the Notch pathway.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The microarray data has been deposited in GEO (GSE115690). Other datasets that were generated during the current study are provided as Supplementary Information or are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Imming, P., Sinning, C. & Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 5, 821–834 (2006).

  2. 2.

    Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

  3. 3.

    Whitfield, J. R., Beaulieu, M. E. & Soucek, L. Strategies to inhibit Myc and their clinical applicability. Front. Cell Dev. Biol. 5, 10 (2017).

  4. 4.

    Hori, K., Sen, A. & Artavanis-Tsakonas, S. Notch signaling at a glance. J. Cell Sci. 126, 2135–2140 (2013).

  5. 5.

    Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

  6. 6.

    Espinoza, I., Pochampally, R., Xing, F., Watabe, K. & Miele, L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther. 6, 1249–1259 (2013).

  7. 7.

    Aster, J. C., Pear, W. S. & Blacklow, S. C. The varied roles of Notch in cancer. Annu. Rev. Pathol. 12, 245–275 (2017).

  8. 8.

    Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

  9. 9.

    Guruharsha, K. G., Kankel, M. W. & Artavanis-Tsakonas, S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat. Rev. Genet. 13, 654–666 (2012).

  10. 10.

    Andersson, E. R., Sandberg, R. & Lendahl, U. Notch signaling: simplicity in design, versatility in function. Development 138, 3593–3612 (2011).

  11. 11.

    Shih, Ie. M. & Wang, T. L. Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res. 67, 1879–1882 (2007).

  12. 12.

    Aster, J. C. & Blacklow, S. C. Targeting the Notch pathway: twists and turns on the road to rational therapeutics. J. Clin. Oncol. 30, 2418–2420 (2012).

  13. 13.

    Imbimbo, B. P. Therapeutic potential of gamma-secretase inhibitors and modulators. Curr. Top. Med. Chem. 8, 54–61 (2008).

  14. 14.

    Ran, Y. et al. γ-Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Mol. Med. 9, 950–966 (2017).

  15. 15.

    Wagner, B. K. & Schreiber, S. L. The power of sophisticated phenotypic screening and modern mechanism-of-action methods. Cell Chem. Biol. 23, 3–9 (2016).

  16. 16.

    Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

  17. 17.

    Schenone, M., Dančík, V., Wagner, B. K. & Clemons, P. A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9, 232–240 (2013).

  18. 18.

    Schirle, M. & Jenkins, J. L. Identifying compound efficacy targets in phenotypic drug discovery. Drug Discov. Today 21, 82–89 (2016).

  19. 19.

    Palacino, J. et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat. Chem. Biol. 11, 511–517 (2015).

  20. 20.

    Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

  21. 21.

    Garbaccio, R. M. & Parmee, E. R. The impact of chemical probes in drug discovery: a pharmaceutical industry perspective. Cell Chem. Biol. 23, 10–17 (2016).

  22. 22.

    Huang, L., Kirschke, C. P., Zhang, Y. & Yu, Y. Y. The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J. Biol. Chem. 280, 15456–15463 (2005).

  23. 23.

    Taylor, K. M., Morgan, H. E., Johnson, A. & Nicholson, R. I. Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochem. J. 377, 131–139 (2004).

  24. 24.

    Hojyo, S. & Fukada, T. Zinc transporters and signaling in physiology and pathogenesis. Arch. Biochem. Biophys. 611, 43–50 (2016).

  25. 25.

    Jeong, J. & Eide, D. J. The SLC39 family of zinc transporters. Mol. Aspects Med. 34, 612–619 (2013).

  26. 26.

    Groth, C., Sasamura, T., Khanna, M. R., Whitley, M. & Fortini, M. E. Protein trafficking abnormalities in Drosophila tissues with impaired activity of the ZIP7 zinc transporter Catsup. Development 140, 3018–3027 (2013).

  27. 27.

    Lindsell, C. E., Shawber, C. J., Boulter, J. & Weinmaster, G. Jagged: a mammalian ligand that activates Notch1. Cell 80, 909–917 (1995).

  28. 28.

    Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052–1057 (2010).

  29. 29.

    Bernasconi-Elias, P. et al. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies. Oncogene 35, 6077–6086 (2016).

  30. 30.

    Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

  31. 31.

    Hoepfner, D. et al. High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol. Res. 169, 107–120 (2014).

  32. 32.

    Huang, Z. et al. A functional variomics tool for discovering drug-resistance genes and drug targets. Cell Rep. 3, 577–585 (2013).

  33. 33.

    Bill, A. et al. Variomics screen identifies the re-entrant loop of the calcium-activated chloride channel ANO1 that facilitates channel activation. J. Biol. Chem. 290, 889–903 (2015).

  34. 34.

    Zhang, T. et al. Crystal structures of a ZIP zinc transporter reveal a binuclear metal center in the transport pathway. Sci. Adv. 3, e1700344 (2017).

  35. 35.

    Qin, Y., Dittmer, P. J., Park, J. G., Jansen, K. B. & Palmer, A. E. Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+with genetically encoded sensors. Proc. Natl Acad. Sci. USA 108, 7351–7356 (2011).

  36. 36.

    Park, J. G. & Palmer, A. E. Quantitative measurement of Ca2+ and Zn2+ in mammalian cells using genetically encoded fluorescent biosensors. Methods Mol. Biol. 1071, 29–47 (2014).

  37. 37.

    Carter, K. P., Carpenter, M. C., Fiedler, B., Jimenez, R. & Palmer, A. E. Critical comparison of FRET-sensor functionality in the cytosol and endoplasmic reticulum and implications for quantification of ions. Anal. Chem. 89, 9601–9608 (2017).

  38. 38.

    Fiedler, B. L. et al. Droplet microfluidic flow cytometer for sorting on transient cellular responses of genetically-encoded sensors. Anal. Chem. 89, 711–719 (2017).

  39. 39.

    Fortini, M. E. Notch signaling: the core pathway and its posttranslational regulation. Dev. Cell 16, 633–647 (2009).

  40. 40.

    Takeuchi, H. & Haltiwanger, R. S. Significance of glycosylation in Notch signaling. Biochem. Biophys. Res. Commun. 453, 235–242 (2014).

  41. 41.

    Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

  42. 42.

    Roti, G. et al. Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell 23, 390–405 (2013).

  43. 43.

    Kapoor, T. M. & Miller, R. M. Leveraging chemotype-specific resistance for drug target identification and chemical biology. Trends Pharmacol. Sci. 38, 1100–1109 (2017).

  44. 44.

    Thomas, J. R. et al. A photoaffinity labeling-based chemoproteomics strategy for unbiased target deconvolution of small molecule drug candidates. Methods Mol. Biol. 1647, 1–18 (2017).

  45. 45.

    Hara, T. et al. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J. Physiol. Sci. 67, 283–301 (2017).

  46. 46.

    Bin, B. H. et al. Requirement of zinc transporter SLC39A7/ZIP7 for dermal development to fine-tune endoplasmic reticulum function by regulating protein disulfide isomerase. J. Invest. Dermatol. 137, 1682–1691 (2017).

  47. 47.

    Ohashi, W. et al. Zinc transporter SLC39A7/ZIP7 promotes intestinal epithelial self-renewal by resolving ER stress. PLoS Genet. 12, e1006349 (2016).

  48. 48.

    Woodruff, G. et al. The zinc transporter SLC39A7 (ZIP7) is essential for regulation of cytosolic zinc levels. Mol. Pharmacol. 94, 1092–1100 (2018).

  49. 49.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

  50. 50.

    König, R. et al. A probability-based approach for the analysis of large-scale RNAi screens. Nat. Methods 4, 847–849 (2007).

  51. 51.

    Sigoillot, F. D. et al. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat. Methods 9, 363–366 (2012).

  52. 52.

    Yilmazel, B. et al. Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis. BMC Bioinformatics 15, 192 (2014).

  53. 53.

    Kauffmann, A., Gentleman, R. & Huber, W. arrayQualityMetrics–a Bioconductor package for quality assessment of microarray data. Bioinformatics 25, 415–416 (2009).

  54. 54.

    Wu, Z., Irizarry, R. A., Gentleman, R., Martinez-Murillo, F. & Spencer, F. A model-based background adjustment for oligonucleotide expression arrays. J. Am. Stat. Assoc. 99, 909–917 (2004).

  55. 55.

    Smyth, G. in Bioinformatics and Computational Biology Solutions Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds. Gentleman, R. et al.) Ch. 23 (Springer, 2005).

  56. 56.

    Tripathi, S. et al. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723–735 (2015).

  57. 57.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  58. 58.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  59. 59.

    Wacker, S. A., Houghtaling, B. R., Elemento, O. & Kapoor, T. M. Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat. Chem. Biol. 8, 235–237 (2012).

  60. 60.

    McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26, 2069–2070 (2010).

  61. 61.

    Abagyan, R. et al. ICM-A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506 (1994).

Download references

Acknowledgements

The JAGGED1 and DLL1 expressing cell lines were kindly provide by G. Weinmaster (UCLA). HPB-ALL cells were kindly provided by A. Stasser (Walter and Eliza Hall Institute for Medical Research). The authors thank J. Paulk for his insights on the manuscript and A. Abrams for his artwork in schematic diagrams. This work was financially supported in part by NIH Director’s Pioneer Award GM114863 (to A.E.P.).

Author information

Author notes

  1. These authors contributed equally: Erin Nolin, Sara Gans.

  2. These authors jointly supervised this work: Simon M. Bushell, Christy J. Fryer.

Affiliations

  1. Novartis Institutes for Biomedical Research, Cambridge, MA, USA

    • Erin Nolin
    • , Sara Gans
    • , Luis Llamas
    • , Somnath Bandyopadhyay
    • , Scott M. Brittain
    • , Paula Bernasconi-Elias
    • , Joseph J. Loureiro
    • , Jason R. Thomas
    • , Markus Schirle
    • , Yi Yang
    • , Ning Guo
    • , Alicia Lindeman
    • , Frederic Sigoillot
    • , Amy Chen
    • , Kevin X. Xie
    • , Samuel Ho
    • , John Reece-Hoyes
    • , Wilhelm A. Weihofen
    • , Kayla Tyskiewicz
    • , Richard I. McDonald
    • , Nicolette Guthrie
    • , Abhishek Dogra
    • , Jian Shao
    • , Jian Ding
    • , Stephen M. Canham
    • , Geoff Boynton
    • , Elizabeth L. George
    • , Zhao B. Kang
    • , Christophe Antczak
    • , Jeffery A. Porter
    • , Owen Wallace
    • , John A. Tallarico
    • , Jeremy L. Jenkins
    • , Rishi K. Jain
    • , Simon M. Bushell
    •  & Christy J. Fryer
  2. Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA

    • Kyle P. Carter
    •  & Amy E. Palmer
  3. Novartis Institutes for Biomedical Research, Basel, Switzerland

    • Guglielmo Roma
    • , Sven Schuierer
    • , Martin Beibel
    •  & Dominic Hoepfner
  4. Novartis Institutes for Biomedical Research, Shanghai, China

    • Haibing Guo

Authors

  1. Search for Erin Nolin in:

  2. Search for Sara Gans in:

  3. Search for Luis Llamas in:

  4. Search for Somnath Bandyopadhyay in:

  5. Search for Scott M. Brittain in:

  6. Search for Paula Bernasconi-Elias in:

  7. Search for Kyle P. Carter in:

  8. Search for Joseph J. Loureiro in:

  9. Search for Jason R. Thomas in:

  10. Search for Markus Schirle in:

  11. Search for Yi Yang in:

  12. Search for Ning Guo in:

  13. Search for Guglielmo Roma in:

  14. Search for Sven Schuierer in:

  15. Search for Martin Beibel in:

  16. Search for Alicia Lindeman in:

  17. Search for Frederic Sigoillot in:

  18. Search for Amy Chen in:

  19. Search for Kevin X. Xie in:

  20. Search for Samuel Ho in:

  21. Search for John Reece-Hoyes in:

  22. Search for Wilhelm A. Weihofen in:

  23. Search for Kayla Tyskiewicz in:

  24. Search for Dominic Hoepfner in:

  25. Search for Richard I. McDonald in:

  26. Search for Nicolette Guthrie in:

  27. Search for Abhishek Dogra in:

  28. Search for Haibing Guo in:

  29. Search for Jian Shao in:

  30. Search for Jian Ding in:

  31. Search for Stephen M. Canham in:

  32. Search for Geoff Boynton in:

  33. Search for Elizabeth L. George in:

  34. Search for Zhao B. Kang in:

  35. Search for Christophe Antczak in:

  36. Search for Jeffery A. Porter in:

  37. Search for Owen Wallace in:

  38. Search for John A. Tallarico in:

  39. Search for Amy E. Palmer in:

  40. Search for Jeremy L. Jenkins in:

  41. Search for Rishi K. Jain in:

  42. Search for Simon M. Bushell in:

  43. Search for Christy J. Fryer in:

Contributions

E.N., S.G., P.B.-E. and C.J.F. developed and/or performed cell-based assays. L.L, R.I.M., N.G., A.D., H.G., J.S., J.D., S.M.C., R.K.J. and S.M. Bushell synthesized compounds and/or directed the medicinal chemistry strategy. S.B., J.J.L., G.R., S.S. and M.B. analyzed/interpreted genomic data. S.H. performed high-throughput screens. J.L.J. and R.K.J. triaged compounds from screens for further characterization. E.N., K.P.C. and A.E.P. performed and interpreted results from zinc FRET sensor experiments. K.P.C. and A.E.P. provided input on zinc and zinc transporter biology. Z.B.K. and C.A. developed assays for zinc quantitation. K.X.X., A.C. and F.S. performed or analyzed the siRNA screen. S.M. Brittain, J.R.T. and M.S. performed or directed the photoaffinity labeling experiments. A.L., N.G. and Y.Y. designed targeting strategy for CRISPR experiments or analyzed data. J.R.-H., W.A.W., K.T., P.B.-E. and E.N. performed the variomics experiments and characterized mutants. J.A.P., O.W., D.H., E.L.G., G.B., R.K.J. and J.A.T. provided intellectual input to the mechanism of action studies. All authors contributed to writing of the work. C.J.F. and S.M. Bushell designed the experimental strategy, wrote the manuscript and held overall responsibility for the study.

Competing interests

E.N., S.G., L.L., S.B., S.M. Brittain, P.B.-E., J.J.L., J.R.T., M.S., Y.Y., N.G., G.R., S.S., M.B., A.L., F.S., A.C., K.X.X., S.H., J.R.-H., W.A.W., K.T., D.H., R.I.M., N.G., A.D., H.G., J.S., J.D., S.M.C., G.B., E.L.G., Z.B.K., C.A., J.A.P., O.W., J.A.T., J.L.J., R.K.J., S.M. Bushell, and C.J.F. are (or were at the time the research was conducted) employees of Novartis.

Corresponding authors

Correspondence to Simon M. Bushell or Christy J. Fryer.

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–16 and Supplementary Tables 1–6

  2. Reporting Summary

  3. Supplementary Note 1

    Chemical Synthesis

  4. Supplementary Note 2

    Chemistry Spectra

  5. Supplementary Dataset 1

    133 gene probe sets identified from microarray that are significantly changed in both TALL-1 and RPMI-8402 cells following NVS-ZP7-3 treatment (adjusted P < 0.001 and a fold change greater than two)

  6. Supplementary Dataset 2

    33 genes with single nucleotide polymorphisms (SNPs)

  7. Supplementary Dataset 3

    Chemoproteomics data

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41589-018-0200-7