A genetics-free method for high-throughput discovery of cryptic microbial metabolites


Bacteria contain an immense untapped trove of novel secondary metabolites in the form of ‘silent’ biosynthetic gene clusters (BGCs). These can be identified bioinformatically but are not expressed under normal laboratory growth conditions. Methods to access their products would dramatically expand the pool of bioactive compounds. We report a universal high-throughput method for activating silent BGCs in diverse microorganisms. Our approach relies on elicitor screening to induce the secondary metabolome of a given strain and imaging mass spectrometry to visualize the resulting metabolomes in response to ~500 conditions. Because it does not require challenging genetic, cloning, or culturing procedures, this method can be used with both sequenced and unsequenced bacteria. We demonstrate the power of the approach by applying it to diverse bacteria and report the discovery of nine cryptic metabolites with potentially therapeutic bioactivities, including a new glycopeptide chemotype with potent inhibitory activity against a pathogenic virus.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: HiTES–IMS workflow.
Fig. 2: Proof-of-concept application of HiTES–IMS to P. protegens.
Fig. 3: Discovery of a novel cryptic lasso peptide by HiTES–IMS.
Fig. 4: Induction of novel glycopeptides by using HiTES–IMS.

Data availability

The data supporting the findings of this study are available within the paper and the supplementary material. NMR data used to characterize the cryptic metabolites are available from the corresponding author upon reasonable request. The DNA sequence of the ker gene cluster from A. keratiniphila has been deposited in GenBank (accession no. MH428036). The LAESI–IMS data for S. canus and A. keratiniphila, including the raw data for Figs. 3a and 4a as well as the source code used to generate the 3D plots, have been deposited in the Global Natural Products Social Molecular Networking (GNPS) database (MassIVE accession number MSV000082658).


  1. 1.

    Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830, 3670–3695 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Cragg, G. M., Grothaus, P. G. & Newman, D. J. Impact of natural products on developing new anti-cancer agents. Chem. Rev. 109, 3012–3043 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).

    Article  Google Scholar 

  5. 5.

    Ikeda, H. et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526–531 (2003).

    Article  Google Scholar 

  6. 6.

    Oliynyk, M. et al. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat. Biotechnol. 25, 447–453 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362–1384 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Liu, X. & Cheng, Y. Q. Genome-guided discovery of diverse natural products from Burkholderia sp. J. Ind. Microbiol. Biotechnol. 41, 275–284 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Baltz, R. H. Gifted microbes for genome mining and natural product discovery. J. Ind. Microbiol. Biotechnol. 44, 573–588 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Okada, B. K. & Seyedsayamdost, M. R. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol. Rev. 41, 19–33 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Ochi, K. & Hosaka, T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl. Microbiol. Biotechnol. 97, 87–98 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Zhu, H., Sandiford, S. K. & van Wezel, G. P. Triggers and cues that activate antibiotic production by actinomycetes. J. Ind. Microbiol. Biotechnol. 41, 371–386 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Nah, H. J., Pyeon, H. R., Kang, S. H., Choi, S. S. & Kim, E. S. Cloning and heterologous expression of a large-sized natural product biosynthetic gene cluster in streptomyces species. Front. Microbiol. 8, 394 (2017).

    Article  Google Scholar 

  15. 15.

    Ren, H., Wang, B. & Zhao, H. Breaking the silence: new strategies for discovering novel natural products. Curr. Opin. Biotechnol. 48, 21–27 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Yoon, V. & Nodwell, J. R. Activating secondary metabolism with stress and chemicals. J. Ind. Microbiol. Biotechnol. 41, 415–424 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Guo, F. et al. Targeted activation of silent natural product biosynthesis pathways by reporter-guided mutant selection. Metab. Eng. 28, 134–142 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Seyedsayamdost, M. R. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc. Natl Acad. Sci. USA 111, 7266–7271 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Xu, F., Nazari, B., Moon, K., Bushin, L. B. & Seyedsayamdost, M. R. Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens. J. Am. Chem. Soc. 139, 9203–9212 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Rosen, P. C. & Seyedsayamdost, M. R. Though much is taken, much abides: finding new antibiotics using old ones. Biochemistry 56, 4925–4926 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Watrous, J. D. & Dorrestein, P. C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 9, 683–694 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Gross, H. et al. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 14, 53–63 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    Nemes, P. & Vertes, A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    Li, H., Balan, P. & Vertes, A. Molecular imaging of growth, metabolism, and antibiotic inhibition in bacterial colonies by laser ablation electrospray ionization mass spectrometry. Angew. Chem. Int. Edn Engl. 55, 15035–15039 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Fincher, J. A. et al. Enhanced sensitivity and metabolite coverage with remote laser ablation electrospray ionization-mass spectrometry aided by coaxial plume and gas dynamics. Analyst 142, 3157–3164 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Li, H. & Vertes, A. Solvent gradient electrospray for laser ablation electrospray ionization mass spectrometry. Analyst 142, 2921–2927 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Heinemann, B., Kaplan, M. A., Muir, R. D. & Hooper, I. R. Amphomycin, a new antibiotic. Antibiot. Chemother. (Northfield) 3, 1239–1242 (1953).

    CAS  Google Scholar 

  28. 28.

    Bodanszky, M., Sigler, G. F. & Bodanszky, A. Structure of the peptide antibiotic amphomycin. J. Am. Chem. Soc. 95, 2352–2357 (1973).

    CAS  Article  Google Scholar 

  29. 29.

    Maksimov, M. O., Pan, S. J. & Link, A.J. Lasso peptides: structure, function, biosynthesis, and engineering. Nat. Prod. Rep. 29, 996–1006 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Hegemann, J. D., Zimmermann, M., Xie, X. & Marahiel, M. A. Lasso peptides: an intriguing class of bacterial natural products. Acc. Chem. Res. 48, 1909–1919 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Güntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  Google Scholar 

  32. 32.

    Herrmann, T., Güntert, P. & Wüthrich, K. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24, 171–189 (2002).

    CAS  Article  Google Scholar 

  33. 33.

    Zhu, S. et al. Insights into the unique phosphorylation of the lasso peptide paeninodin. J. Biol. Chem. 291, 13662–13678 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470–478 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Price, J. C., Barr, E. W., Tirupati, B., Bollinger, J. M. Jr. & Krebs, C. The first direct characterization of a high-valent iron intermediate in the reaction of an α-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/α-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry 42, 7497–7508 (2003).

    CAS  Article  Google Scholar 

  36. 36.

    Krebs, C., Galonić Fujimori, D., Walsh, C. T. & Bollinger, J. M. Jr. Non-heme Fe(IV)-oxo intermediates. Acc. Chem. Res. 40, 484–492 (2007).

    CAS  Article  Google Scholar 

  37. 37.

    Tiwari, K. & Gupta, R. K. Rare actinomycetes: a potential storehouse for novel antibiotics. Crit. Rev. Biotechnol. 32, 108–132 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Nicolaou, K. C., Boddy, C. N., Bräse, S. & Winssinger, N. Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew. Chem. Int. Edn Engl. 38, 2096–2152 (1999).

    CAS  Article  Google Scholar 

  39. 39.

    Hubbard, B. K. & Walsh, C. T. Vancomycin assembly: nature’s way. Angew. Chem. Int. Edn Engl. 42, 730–765 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    Shen, B., Liu, W. & Nonaka, K. Enediyne natural products: biosynthesis and prospect towards engineering novel antitumor agents. Curr. Med. Chem. 10, 2317–2325 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    Everest, G. J. & Meyers, P. R. Evaluation of the antibiotic biosynthetic potential of the genus Amycolatopsis and description of Amycolatopsis circi sp. nov., Amycolatopsis equina sp. nov. and Amycolatopsis hippodromi sp. nov. J. Appl. Microbiol. 111, 300–311 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    Heald, S. L., Mueller, L. & Jeffs, P. W. Actinoidins A and A2: structure determination using 2D NMR methods. J. Antibiot. (Tokyo) 40, 630–645 (1987).

    CAS  Article  Google Scholar 

  43. 43.

    Berdnikova, T. F., Lomakina, N. N. & Potapova, N. P. [Structure of actinoidins A and B]. Antibiotiki 27, 252–258 (1982).

    CAS  PubMed  Google Scholar 

  44. 44.

    Diekema, D. J. & Jones, R. N. Oxazolidinone antibiotics. Lancet 358, 1975–1982 (2001).

    CAS  Article  Google Scholar 

  45. 45.

    Jorquera, P. A. & Tripp, R. A. Respiratory syncytial virus: prospects for new and emerging therapeutics. Expert Rev. Respir. Med. 11, 609–615 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Yang, Y. L., Xu, Y., Straight, P. & Dorrestein, P. C. Translating metabolic exchange with imaging mass spectrometry. Nat. Chem. Biol. 5, 885–887 (2009).

    CAS  Article  Google Scholar 

  47. 47.

    Kersten, R. D. et al. A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat. Chem. Biol. 7, 794–802 (2011).

    CAS  Article  Google Scholar 

  48. 48.

    Traxler, M. F., Watrous, J. D., Alexandrov, T., Dorrestein, P. C. & Kolter, R. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. mBio 4, e00459–13 (2013).

    Article  Google Scholar 

  49. 49.

    Du, L. et al. Unique amalgamation of primary and secondary structural elements transform peptaibols into potent bioactive cell-penetrating peptides. Proc. Natl Acad. Sci. USA 114, E8957–E8966 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Craney, A., Ozimok, C., Pimentel-Elardo, S. M., Capretta, A. & Nodwell, J. R. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem. Biol. 19, 1020–1027 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    Goodwin, C. R. et al. Structuring microbial metabolic responses to multiplexed stimuli via self-organizing metabolomics maps. Chem. Biol. 22, 661–670 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    Okada, B. K., Wu, Y., Mao, D., Bushin, L. B. & Seyedsayamdost, M. R. Mapping the trimethoprim-induced secondary metabolome of Burkholderia thailandensis. ACS Chem. Biol. 11, 2124–2130 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Davies, J., Spiegelman, G. B. & Yim, G. The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 9, 445–453 (2006).

    CAS  Article  Google Scholar 

  54. 54.

    Yim, G., Wang, H. H. & Davies, J. Antibiotics as signalling molecules. Phil. Trans. R. Soc. Lond. B 362, 1195–1200 (2007).

    CAS  Article  Google Scholar 

  55. 55.

    Romero, D., Traxler, M. F., López, D. & Kolter, R. Antibiotics as signal molecules. Chem. Rev. 111, 5492–5505 (2011).

    CAS  Article  Google Scholar 

  56. 56.

    Hu, H. & Ochi, K. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl. Environ. Microbiol. 67, 1885–1892 (2001).

    CAS  Article  Google Scholar 

  57. 57.

    Yilmaz, E. M. & Güntert, P. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary. J. Biomol. NMR 63, 21–37 (2015).

    CAS  Article  Google Scholar 

Download references


We thank the National Institutes of Health (DP2-AI-124786 to M.R.S.), the Burroughs Wellcome Fund, and the Princeton IP Accelerator Fund for support of this work. K.M.D. was supported by an Arnold O. Beckman Postdoctoral Fellowship. L.B.B. was supported by a National Science Foundation Graduate Research Fellowship.

Author information




F.X., Y.W., and M.R.S. designed the research; F.X., Y.W., and C.Z. carried out high-throughput elicitor screens and validations; Y.W. conducted the LAESI–IMS experiments and analyzed the results; F.X. purified and solved the structures of all secondary metabolites, with assistance from K.M.D. and K.M. Y.W. conducted structure calculations, with assistance from L.B.B. F.X. carried out bioinformatic analyses. M.R.S. wrote the manuscript, to which all authors contributed. F.X. and Y.W. contributed equally to this work.

Corresponding author

Correspondence to Mohammad R. Seyedsayamdost.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–14 and Supplementary Figures 1–6

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Wu, Y., Zhang, C. et al. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat Chem Biol 15, 161–168 (2019). https://doi.org/10.1038/s41589-018-0193-2

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing