Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metalloprotein switches that display chemical-dependent electron transfer in cells

Abstract

Biological electron transfer is challenging to directly regulate using environmental conditions. To enable dynamic, protein-level control over energy flow in metabolic systems for synthetic biology and bioelectronics, we created ferredoxin logic gates that utilize transcriptional and post-translational inputs to control energy flow through a synthetic electron transfer pathway that is required for bacterial growth. These logic gates were created by subjecting a thermostable, plant-type ferredoxin to backbone fission and fusing the resulting fragments to a pair of proteins that self-associate, a pair of proteins whose association is stabilized by a small molecule, and to the termini of a ligand-binding domain. We show that the latter domain insertion design strategy yields an allosteric ferredoxin switch that acquires an oxygen-tolerant [2Fe–2S] cluster and can use different chemicals, including a therapeutic drug and an environmental pollutant, to control the production of a reduced metabolite in Escherichia coli and cell lysates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Designing split Fds that transfer electrons within cells.
Fig. 2: Post-translational control over Fd electron transfer in cells.
Fig. 3: Using domain insertion to create a Fd switch.
Fig. 4: Using purified sFd-35-ER to control metabolite production in cell lysates.

Similar content being viewed by others

Data availability

There are no restrictions on data availability. Accession codes and sequences used for multiple sequence alignments are provided in Supplementary Note 1. Raw data for Figs. 1, 2 and 3 are available upon request.

References

  1. Jensen, H. M. et al. Engineering of a synthetic electron conduit in living cells. Proc. Natl Acad. Sci. USA 107, 19213–19218 (2010).

    Article  CAS  Google Scholar 

  2. Webster, D. P. et al. An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens. Bioelectron. 62, 320–324 (2014).

    Article  CAS  Google Scholar 

  3. Golitsch, F., Bücking, C. & Gescher, J. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens. Bioelectron. 47, 285–291 (2013).

    Article  CAS  Google Scholar 

  4. West, E. A., Jain, A. & Gralnick, J. A. Engineering a native inducible expression system in Shewanella oneidensis to control extracellular electron transfer. ACS Synth. Biol. 6, 1627–1634 (2017).

    Article  CAS  Google Scholar 

  5. Kracke, F., Vassilev, I. & Krömer, J. O. Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Front. Microbiol. 6, 575 (2015).

    Article  Google Scholar 

  6. Shomar, H. et al. Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli. Nat. Chem. Biol. 14, 794–800 (2018).

    Article  CAS  Google Scholar 

  7. Kallio, P., Pásztor, A., Thiel, K., Akhtar, M. K. & Jones, P. R. An engineered pathway for the biosynthesis of renewable propane. Nat. Commun. 5, 4731 (2014).

    Article  CAS  Google Scholar 

  8. Eck, R. V. & Dayhoff, M. O. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152, 363–366 (1966).

    Article  CAS  Google Scholar 

  9. Harel, A., Bromberg, Y., Falkowski, P. G. & Bhattacharya, D. Evolutionary history of redox metal-binding domains across the tree of life. Proc. Natl Acad. Sci. USA 111, 7042–7047 (2014).

    Article  CAS  Google Scholar 

  10. Sousa, F. L. et al. Early bioenergetic evolution. Phil. Trans. R. Soc. Lond. B 368, 20130088 (2013).

    Article  Google Scholar 

  11. Atkinson, J. T., Campbell, I., Bennett, G. N. & Silberg, J. J. Cellular assays for ferredoxins: a strategy for understanding electron flow through protein carriers that link metabolic pathways. Biochemistry 55, 7047–7064 (2016).

    Article  CAS  Google Scholar 

  12. Hall, D. O., Cammack, R. & Rao, K. K. Role for ferredoxins in the origin of life and biological evolution. Nature 233, 136–138 (1971).

    Article  CAS  Google Scholar 

  13. Barstow, B. et al. A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism. J. Biol. Eng. 5, 7 (2011).

    Article  CAS  Google Scholar 

  14. Yang, J., Xie, X., Yang, M., Dixon, R. & Wang, Y.-P. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity. Proc. Natl Acad. Sci. USA 114, E2460–E2465 (2017).

    Article  CAS  Google Scholar 

  15. Schlesier, J., Rohde, M., Gerhardt, S. & Einsle, O. A conformational switch triggers nitrogenase protection from oxygen damage by shethna protein II (FeSII). J. Am. Chem. Soc. 138, 239–247 (2016).

    Article  CAS  Google Scholar 

  16. Milton, R. D. et al. The in vivo potential-regulated protective protein of nitrogenase in Azotobacter vinelandii supports eerobic bioelectrochemical dinitrogen reduction in vitro. J. Am. Chem. Soc. 139, 9044–9052 (2017).

    Article  CAS  Google Scholar 

  17. Angeleri, M., Zorina, A., Aro, E.-M. & Battchikova, N. Interplay of SpkG kinase and the Slr0151 protein in the phosphorylation of ferredoxin 5 in Synechocystis sp. strain PCC 6803. FEBS Lett. 592, 411–421 (2018).

    Article  CAS  Google Scholar 

  18. Moscatiello, R. et al. Identification of ferredoxin II as a major calcium binding protein in the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. BMC. Microbiol. 15, 16 (2015).

    Article  Google Scholar 

  19. Rumpel, S. et al. Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energy Environ. Sci. 7, 3296–3301 (2014).

    Article  CAS  Google Scholar 

  20. Eilenberg, H. et al. The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance. Biotechnol. Biofuels. 9, 182 (2016).

    Article  Google Scholar 

  21. Yacoby, I. et al. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc. Natl Acad. Sci. USA 108, 9396–9401 (2011).

    Article  CAS  Google Scholar 

  22. Mellor, S. B. et al. Fusion of ferredoxin and cytochrome P450 enables direct light-driven biosynthesis. ACS. Chem. Biol. 11, 1862–1869 (2016).

    Article  CAS  Google Scholar 

  23. Stein, V. & Alexandrov, K. Synthetic protein switches: design principles and applications. Trends Biotechnol. 33, 101–110 (2015).

    Article  CAS  Google Scholar 

  24. Pelletier, J. N., Campbell-Valois, F. X. & Michnick, S. W. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl Acad. Sci. USA 95, 12141–12146 (1998).

    Article  CAS  Google Scholar 

  25. Thomas, E. E., Pandey, N., Knudsen, S., Ball, Z. T. & Silberg, J. J. Programming post-translational control over the metabolic labeling of cellular proteins with a noncanonical amino acid. ACS Synth. Biol. 6, 1572–1583 (2017).

    Article  CAS  Google Scholar 

  26. Guntas, G., Mansell, T. J., Kim, J. R. & Ostermeier, M. Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc. Natl Acad. Sci. USA 102, 11224–11229 (2005).

    Article  CAS  Google Scholar 

  27. Fish, A., Danieli, T., Ohad, I., Nechushtai, R. & Livnah, O. Structural basis for the thermostability of ferredoxin from the cyanobacterium Mastigocladus laminosus. J. Mol. Biol. 350, 599–608 (2005).

    Article  CAS  Google Scholar 

  28. Segall-Shapiro, T. H. et al. Mesophilic and hyperthermophilic adenylate kinases differ in their tolerance to random fragmentation. J. Mol. Biol. 406, 135–148 (2011).

    Article  CAS  Google Scholar 

  29. Kim, J. Y., Nakayama, M., Toyota, H., Kurisu, G. & Hase, T. Structural and mutational studies of an electron transfer complex of maize sulfite reductase and ferredoxin. J. Biochem. 160, 101–109 (2016).

    Article  CAS  Google Scholar 

  30. Kurisu, G. et al. Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat. Struct. Biol. 8, 117–121 (2001).

    Article  CAS  Google Scholar 

  31. Reinke, A. W., Grant, R. A. & Keating, A. E. A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering. J. Am. Chem. Soc. 132, 6025–6031 (2010).

    Article  CAS  Google Scholar 

  32. Michnick, S. W., Rosen, M. K., Wandless, T. J., Karplus, M. & Schreiber, S. L. Solution structure of FKBP, a rotamase enzyme and receptor for FK506 and rapamycin. Science 252, 836–839 (1991).

    Article  CAS  Google Scholar 

  33. Shiau, A. K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  Google Scholar 

  34. Paige, L. A. et al. Estrogen receptor (ER) modulators each induce distinct conformational changes in ER alpha and ER beta. Proc. Natl Acad. Sci. USA 96, 3999–4004 (1999).

    Article  CAS  Google Scholar 

  35. Stephens, P. J. et al. Circular dichroism and magnetic circular dichroism of iron-sulfur proteins. Biochemistry 17, 4770–4778 (1978).

    Article  CAS  Google Scholar 

  36. Ta, D. T. & Vickery, L. E. Cloning, sequencing, and overexpression of a [2Fe-2S] ferredoxin gene from Escherichia coli. J. Biol. Chem. 267, 11120–11125 (1992).

    CAS  PubMed  Google Scholar 

  37. Bak, D. W., Zuris, J. A., Paddock, M. L., Jennings, P. A. & Elliott, S. J. Redox characterization of the FeS protein MitoNEET and impact of thiazolidinedione drug binding. Biochemistry 48, 10193–10195 (2009).

    Article  CAS  Google Scholar 

  38. Aliverti, A. et al. Biochemical and crystallographic characterization of ferredoxin-NADP+ reductase from nonphotosynthetic tissues. Biochemistry 40, 14501–14508 (2001).

    Article  CAS  Google Scholar 

  39. Hirasawa, M., Nakayama, M., Hase, T. & Knaff, D. B. Oxidation-reduction properties of maize ferredoxin: sulfite oxidoreductase. Biochim. Biophys. Acta 1608, 140–148 (2004).

    Article  CAS  Google Scholar 

  40. Bak, D. W. & Elliott, S. J. Alternative FeS cluster ligands: tuning redox potentials and chemistry. Curr. Opin. Chem. Biol. 19, 50–58 (2014).

    Article  CAS  Google Scholar 

  41. Lin, V. S., Lippert, A. R. & Chang, C. J. Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production. Proc. Natl Acad. Sci. USA 110, 7131–7135 (2013).

    Article  CAS  Google Scholar 

  42. Navarro, F., Martín-Figueroa, E., Candau, P. & Florencio, F. J. Ferredoxin-dependent iron-sulfur flavoprotein glutamate synthase (GlsF) from the Cyanobacterium synechocystis sp. PCC 6803: expression and assembly in Escherichia coli. Arch. Biochem. Biophys. 379, 267–276 (2000).

    Article  CAS  Google Scholar 

  43. Mulholland, S. E., Gibney, B. R., Rabanal, F. & Dutton, L. P. Characterization of the fundamental protein ligand requirements of [4Fe-4S]2+/+ clusters with sixteen amino acid maquettes. J. Am. Chem. Soc. 120, 10296–10302 (1998).

    Article  CAS  Google Scholar 

  44. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  Google Scholar 

  45. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS One 3, e3647 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

E. coli EW11 and the genes encoding Zea mays FNR, Zea mays SIR, and Spinacia oleracea Fd were a gift from P. Silver (Harvard University). Cellular assay development was supported by DOE grant DE-SC0014462 (G.N.B. and J.J.S.), split Fd efforts were supported by NASA grant NNX15AL28G (J.J.S. and G.N.B.), domain insertion efforts were supported by ONR grant N00014-17-1-2639 (J.J.S.), and electrochemistry was supported by DOE grant DE-SC0012598 (S.J.E.). J.T.A. was supported by NSF GRFP and DOE SGCSR fellowships.

Author information

Authors and Affiliations

Authors

Contributions

J.T.A. designed and constructed all DNA vectors, performed the multiple sequence analysis, and did all cellular experiments. I.J.C. purified proteins and performed the lysate experiments. E.E.T. evaluated the switch substrate specificity profile. S.C.B. and S.J.E. performed the voltammetry. J.T.A., J.J.S., and G.N.B. conceptualized the project. J.T.A. and J.J.S. wrote the manuscript.

Corresponding author

Correspondence to Jonathan J. Silberg.

Ethics declarations

Competing interests

J.J.S., J.T.A., G.N.B., and I.J.C. have submitted a patent application (No 16/186,226) covering the use of fragmented Fds as chemical-dependent electron carriers, entitled “Regulating electron flow using fragmented proteins.”

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–9

Reporting Summary

Supplementary Note 1

Full-length multiple structure/sequence alignment of plant-type Fds used for sequence divergence profile calculation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, J.T., Campbell, I.J., Thomas, E.E. et al. Metalloprotein switches that display chemical-dependent electron transfer in cells. Nat Chem Biol 15, 189–195 (2019). https://doi.org/10.1038/s41589-018-0192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0192-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology