Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted delivery of nitric oxide via a ‘bump-and-hole’-based enzyme–prodrug pair

Abstract

The spatiotemporal generation of nitric oxide (NO), a versatile endogenous messenger, is precisely controlled. Despite its therapeutic potential for a wide range of diseases, NO-based therapies are limited clinically due to a lack of effective strategies for precisely delivering NO to a specific site. In the present study, we developed a novel NO delivery system via modification of an enzyme–prodrug pair of galactosidase–galactosyl-NONOate using a ‘bump-and-hole’ strategy. Precise delivery to targeted tissues was clearly demonstrated by an in vivo near-infrared imaging assay. The therapeutic potential was evaluated in both rat hindlimb ischemia and mouse acute kidney injury models. Targeted delivery of NO clearly enhanced its therapeutic efficacy in tissue repair and function recovery and abolished side effects due to the systemic release of NO. The developed protocol holds broad applicability in the targeted delivery of important gaseous signaling molecules and offers a potent tool for the investigation of relevant molecular mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ‘Bump-and-hole’-based prodrug design.
Fig. 2: Engineering β-galactosidases for selectively activating ‘bumpy’ glycosyl-probes.
Fig. 3: Synthesis and evaluation of MeGal-NO prodrug.
Fig. 4: Targeted delivery of nitric oxide enhances the angiogenesis and blood perfusion, modulates inflammatory response, and ameliorates muscle recovery in a rat hindlimb ischemia model.
Fig. 5: Targeted delivery of nitric oxide attenuates renal injury and promotes kidney repair in mouse acute kidney injury (AKI) model.
Fig. 6: Targeted delivery of nitric oxide rescues the vulnerability of eNOS-deficient mice to acute kidney injury (AKI).

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and supplementary information files and from the corresponding authors upon reasonable request.

References

  1. Förstermann, U. & Sessa, W. C. Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837, 837a–837d (2012).

  2. SoRelle, R. Nobel prize awarded to scientists for nitric oxide discoveries. Circulation 98, 2365–2366 (1998).

    Article  CAS  Google Scholar 

  3. de Carvalho, M. P., Weich, H. & Abraham, W.-R. Macrocyclic trichothecenes as antifungal and anticancer compounds. Curr. Med. Chem. 23, 23–35 (2016).

    Article  Google Scholar 

  4. Miller, M. R. & Megson, I. L. Recent developments in nitric oxide donor drugs. Br. J. Pharmacol. 151, 305–321 (2007).

    Article  CAS  Google Scholar 

  5. Baek, S. H. et al. Augmentation of intrapericardial nitric oxide level by a prolonged-release nitric oxide donor reduces luminal narrowing after porcine coronary angioplasty. Circulation 105, 2779–2784 (2002).

    Article  CAS  Google Scholar 

  6. Kapadia, M. R. et al. Nitric oxide and nanotechnology: a novel approach to inhibit neointimal hyperplasia. J. Vasc. Surg. 47, 173–182 (2008).

    Article  Google Scholar 

  7. Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2, 907–916 (2001).

    Article  CAS  Google Scholar 

  8. Mazzone, M. & Carmeliet, P. Drug discovery: a lifeline for suffocating tissues. Nature 453, 1194–1195 (2008).

    Article  CAS  Google Scholar 

  9. Kashiwagi, S. et al. NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J. Clin. Invest. 115, 1816–1827 (2005).

    Article  CAS  Google Scholar 

  10. Lundberg, J. O., Weitzberg, E. & Gladwin, M. T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug. Discov. 7, 156–167 (2008).

    Article  CAS  Google Scholar 

  11. Hrabie, J. A. & Keefer, L. K. Chemistry of the nitric oxide-releasing diazeniumdiolate (“nitrosohydroxylamine”) functional group and its oxygen-substituted derivatives. Chem. Rev. 102, 1135–1154 (2002).

    Article  CAS  Google Scholar 

  12. Wu, X., Tang, X., Xian, M. & Wang, P. G. Glycosylated diazeniumdiolates: a novel class of enzyme-activated nitric oxide donors. Tetrahedr. Lett. 42, 3779–3782 (2001).

    Article  CAS  Google Scholar 

  13. Zhao, Q. et al. Polysaccharide-based biomaterials with on-demand nitric oxide releasing property regulated by enzyme catalysis. Biomaterials. 34, 8450–8458 (2013).

    Article  CAS  Google Scholar 

  14. Wang, Z. et al. Enzyme-functionalized vascular grafts catalyze in-situ release of nitric oxide from exogenous NO prodrug. J. Control Release 210, 179–188 (2015).

    Article  CAS  Google Scholar 

  15. Chandrawati, R. et al. Localized and controlled delivery of nitric oxide to the conventional outflow pathway via enzyme biocatalysis: toward therapy for glaucoma. Adv. Mater. 29, 1604932 (2017).

    Article  Google Scholar 

  16. Chandrawati, R. et al. Enzyme prodrug therapy engineered into electrospun fibers with embedded liposomes for controlled, localized synthesis of therapeutics. Adv. Healthc. Mater. 6, 1700385 (2017).

    Article  Google Scholar 

  17. Lundberg, J. O., Gladwin, M. T. & Weitzberg, E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat. Rev. Drug. Discov. 14, 623–641 (2015).

    Article  CAS  Google Scholar 

  18. Springer, C. J. & Niculescu-Duvaz, I. Antibody-directed enzyme prodrug therapy (ADEPT): a review. Adv. Drug Deliv. Rev. 26, 151–172 (1997).

    Article  CAS  Google Scholar 

  19. Städler, B. & Zelikin, A. N. Enzyme prodrug therapies and therapeutic enzymes. Adv. Drug Deliv. Rev. 118, 1 (2017).

    Article  Google Scholar 

  20. Walther, R., Rautio, J. & Zelikin, A. N. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv. Drug Deliv. Rev. 118, 65–77 (2017).

    Article  CAS  Google Scholar 

  21. Shah, K., Liu, Y., Deirmengian, C. & Shokat, K. M. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Natl Acad. Sci. USA 94, 3565–3570 (1997).

    Article  CAS  Google Scholar 

  22. Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  Google Scholar 

  23. Baud, M. G. J. et al. Chemical biology. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes. Science 346, 638–641 (2014).

    Article  CAS  Google Scholar 

  24. Baud, M. G., Lin-Shiao, E., Zengerle, M., Tallant, C. & Ciulli, A. New synthetic routes to triazolo-benzodiazepine analogues: expanding the scope of the bump-and-hole approach for selective bromo and extra-terminal (BET) bromodomain inhibition. J. Med. Chem. 59, 1492–1500 (2016).

    Article  CAS  Google Scholar 

  25. Islam, K. et al. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation. Proc. Natl Acad. Sci. USA 110, 16778–16783 (2013).

    Article  CAS  Google Scholar 

  26. Cai, T. B., Lu, D., Landerholm, M. & Wang, P. G. Sialated diazeniumdiolate: a new sialidase-activated nitric oxide donor. Org. Lett. 6, 4203–4205 (2004).

    Article  CAS  Google Scholar 

  27. Nagano, T. & Yoshimura, T. Bioimaging of nitric oxide. Chem. Rev. 102, 1235–1270 (2002).

    Article  CAS  Google Scholar 

  28. Sabbisetti, V. S. et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol. 25, 2177–2186 (2014).

    Article  CAS  Google Scholar 

  29. Portilla, D. et al. Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int. 69, 2194–2204 (2006).

    Article  CAS  Google Scholar 

  30. Vaziri, N. D. HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat. Rev. Nephrol. 12, 37–47 (2016).

    Article  CAS  Google Scholar 

  31. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1053 (2013).

    Article  CAS  Google Scholar 

  32. Sun, Y. B. Y., Qu, X., Caruana, G. & Li, J. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation 92, 102–107 (2016).

    Article  CAS  Google Scholar 

  33. Liu, Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 69, 213–217 (2006).

    Article  CAS  Google Scholar 

  34. Feng, G. et al. IGF-1 C domain-modified hydrogel enhances cell Therapy for AKI. J. Am. Soc. Nephrol. 27, 2357–2369 (2016).

    Article  CAS  Google Scholar 

  35. Chiazza, F. et al. A nitric oxide-donor furoxan moiety improves the efficacy of edaravone against early renal dysfunction and injury evoked by ischemia/reperfusion. Oxid. Med. Cell Longev. 2015, 804659 (2015).

    Article  Google Scholar 

  36. Yuen, D. A. et al. eNOS deficiency predisposes podocytes to injury in diabetes. J. Am. Soc. Nephrol. 23, 1810–1823 (2012).

    Article  CAS  Google Scholar 

  37. Cheng, H. et al. Synthesis and enzyme-specific activation of carbohydrate-geldanamycin conjugates with potent anticancer activity. J. Med. Chem. 48, 645–652 (2005).

    Article  CAS  Google Scholar 

  38. Bolam, D. N. et al. The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. Proc. Natl Acad. Sci. USA 104, 5336–5341 (2007).

    Article  CAS  Google Scholar 

  39. Ramakrishnan, B. & Qasba, P. K. Structure-based design of β1,4-galactosyltransferase I (β4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens β4Gal-T1 donor specificity. J. Biol. Chem. 277, 20833–20839 (2002).

    Article  CAS  Google Scholar 

  40. Uchida, N. et al. Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair. Nat. Chem. Biol. 14, 299–305 (2018).

    Article  CAS  Google Scholar 

  41. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  CAS  Google Scholar 

  42. Cao, R. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9, 604–613 (2003).

    Article  CAS  Google Scholar 

  43. Place, E. S., Evans, N. D. & Stevens, M. M. Complexity in biomaterials for tissue engineering. Nat. Mater. 8, 457–470 (2009).

    Article  CAS  Google Scholar 

  44. Cooke, J. P. NO and angiogenesis. Atheroscler. Suppl. 4, 53–60 (2003).

    Article  CAS  Google Scholar 

  45. Ziche, M. et al. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J. Clin. Invest. 94, 2036–2044 (1994).

    Article  CAS  Google Scholar 

  46. Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  CAS  Google Scholar 

  47. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  Google Scholar 

  48. Khambata, R. S. et al. Antiinflammatory actions of inorganic nitrate stabilize the atherosclerotic plaque. Proc. Natl Acad. Sci. USA 114, E550–E559 (2017).

    Article  CAS  Google Scholar 

  49. Liu, V. W. & Huang, P. L. Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc. Res. 77, 19–29 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Berg, J. D. & Fiksdal, L. Rapid detection of total and fecal coliforms in water by enzymatic hydrolysis of 4-methylumbelliferone-β-d-galactoside. Appl. Environ. Microbiol. 54, 2118–2122 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Huber, R. E., Hakda, S., Cheng, C., Cupples, C. G. & Edwards, R. A. Trp-999 of β-galactosidase (Escherichia coli) is a key residue for binding, catalysis, and synthesis of allolactose, the natural lac operon inducer. Biochemistry 42, 1796–1803 (2003).

    Article  CAS  Google Scholar 

  52. Shinobu, L. A., Jones, S. G. & Jones, M. M. Sodium N-methyl-d-glucamine dithiocarbamate and cadmium intoxication. Acta Pharmacol. Toxicol. (Copenh.) 54, 189–194 (1984).

    Article  CAS  Google Scholar 

  53. Ricles, L. M. et al. Therapeutic assessment of mesenchymal stem cells delivered within a PEGylated fibrin gel following an ischemic injury. Biomaterials. 102, 9–19 (2016).

    Article  CAS  Google Scholar 

  54. Du, W. et al. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials. 133, 70–81 (2017).

    Article  CAS  Google Scholar 

  55. Kinnaird, T. et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543–1549 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Xiao at Shanghai University for kindly donating eNOS-knockout mice. This study was supported by National Natural Science Foundation of China (Nos. 81522023 to Q.Z., 81830060 to D.K., 81603064 to J.H., 81871500 to Q.Z., and 91639113 to Q.Z.) and National Key R&D Program of China (2017YFC1103501 to D.K. and Q.Z.).

Author information

Authors and Affiliations

Authors

Contributions

J.S. and J.C. conceived the original concept and initiated this project. Q.Z. designed the experiment and supervised the entire project. Y.F. performed the expression of enzymes under the supervision of J.C. J.H. carried out the synthesis of all compounds and fluorescent probes. G.F. established ischemia animal models. Y.P. and D.Z. performed the in vivo evaluation and analyzed data under the supervision of Q.Z. J.H. and H.W. performed the in vitro releasing test of NO. Y.W. carried out the RT-PCR assay. T.Z. performed micro-CT analysis under the supervision of Y.Z. Y.L. helped with EPR analysis. K.Q., Y.C., and Q.Y. helped with data collection. P.G.W. and D.K. provided critical feedback and helped in review of the article. Q.Z., J.C., and J.H. wrote the paper with input from other authors.

Corresponding authors

Correspondence to Jiansong Cheng, Jie Shen or Qiang Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5, Supplementary Figures 1–17

Reporting Summary

Supplementary Note 1

Synthetic Procedures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Pan, Y., Zhu, D. et al. Targeted delivery of nitric oxide via a ‘bump-and-hole’-based enzyme–prodrug pair. Nat Chem Biol 15, 151–160 (2019). https://doi.org/10.1038/s41589-018-0190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0190-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research